Question

In: Economics

In a two-player, one-shot simultaneous-move game each player can choose strategy A or strategy B. If...

In a two-player, one-shot simultaneous-move game each player can choose strategy A or strategy B. If both players choose strategy A, each earns a payoff of $17. If both players choose strategy B, each earns a payoff of $27. If player 1 chooses strategy A and player 2 chooses strategy B, then player 1 earns $62 and player 2 earns $11. If player 1 chooses strategy B and player 2 chooses strategy A, then player 1 earns $11 and player 2 earns $62. Suppose this game is infinitely repeated. What is the maximum interest rate that can sustain collusion? Round all calculations to 2 decimals. If 10% input .10

Solutions

Expert Solution

The matrix is shown below

Player 2

Player 1

A

B

A

(17, 17)

(62, 11)

B

(11, 62)

(27, 27)

Nash equilibrium is (A, A) but is not pareto optimum. If collusion is done, optimum strategy is (B, B).

Assume that both the players follow the grim trigger strategy. This implies punsihment is given forever once any of the player deviates. Hence there are two outcome possible for this subgame: (B, B) in for all periods including the current one or (A, A) in all periods as the punishment is given forever.

For the first case, a player’s payoff is 27 for infinite period.

If he deviates in first period he will be able to secure 62 in that period but will receive only 17 for each period forever. Hence the payoff is 62 + 17? + 17?2 + ... = 62(1??) + 17? . The player has no incentive to deviate if the payoff from not deviating exceed the payoff from deviating:

27 ? 62(1??) + 17?

27 ? 62? 62? + 17?

27 ? 62 – 45?

? ? 35/45 OR 0.78.

Maximum interest rate that can sustain collusion is 0.78


Related Solutions

2. In a two-player, one-shot, simultaneous-move game, each player can choose strategy A or strategy B....
2. In a two-player, one-shot, simultaneous-move game, each player can choose strategy A or strategy B. If both players choose strategy A, each earns a payoff of $400. If both players choose strategy B, each earns a payoff of $200. If player 1 chooses strategy A and player 2 chooses strategy B, then player 1 earns $100 and player 2 earns $600. If player 1 chooses strategy B and player 2 chooses strategy A, then player 1 earns $600 and...
Use the following payoff matrix for a simultaneous-move one-shot game to answer the accompanying questions. Player...
Use the following payoff matrix for a simultaneous-move one-shot game to answer the accompanying questions. Player 2 Strategy C D E F Player 1 A 25,15 4,20 16,14 28,12 B 10,10 5,15 8,6 18,13 a. What is player 1’s optimal strategy? Why? b. Determine player 1’s equilibrium payoff.
Suppose you are given the following one-shot, simultaneous-move game:                               &nbsp
Suppose you are given the following one-shot, simultaneous-move game:                                      BP and Exxon are deciding whether or not to charge a high price or a low price for       gasoline sales tomorrow. The two firms cannot collude, and both will post their prices tomorrow at the same time. This game has the following payoff matrix (profits for the day are in parentheses):                                                                                     Exxon High Price Low Price High Price ($800, $800) (-$300, $1,200) Low Price ($1,200, -$300) ($500,...
Below is the pay-off matrix for a one-shot, simultaneous move game with two players/firms, Firm 1...
Below is the pay-off matrix for a one-shot, simultaneous move game with two players/firms, Firm 1 and Firm 2. They are both in the apple market. Each can chose to go for the high end of the market (high quality) or the low end of the market (low quality). The payoffs are profits in thousands of dollars. Each firm has two strategies: low and high.    Firm2 Low High Low -$20, -$30 $100,$800 Firm High $900,$600 $50,$50 Using the above...
. Consider a simultaneous move game between a teachers’ union and a university. Each agent can...
. Consider a simultaneous move game between a teachers’ union and a university. Each agent can bargain hard (H) or accommodate (A). If both the parties bargain hard (H,H), each would gain nothing. If only one party bargains hard the accommodating party gets a benefit of $1 million while the bargaining party gets a $5 million, while if they both accommodate (A,A), they each get $3 million in benefit. a. Draw the bargaining game in normal form (a matrix). b....
Three firms (A, B, and C) play a simultaneous-move quantity competition game in which they can...
Three firms (A, B, and C) play a simultaneous-move quantity competition game in which they can choose any Qi ∊ [0, ∞). Firms A and B have cost functions of Ci = 10Qi, while firm C has C(Q) = 4Q. The firms face the demand curve P = 40 – 0.01(QA + QB + QC). a. What are the three firms’ response functions? b. What are the firms’ equilibrium quantities? c. What is the equilibrium market price, the firms’ profit...
Consider a simultaneous move game between a plumbers’ union and a school. Each agent can bargain...
Consider a simultaneous move game between a plumbers’ union and a school. Each agent can bargain hard (H) or accommodate (A). If both the parties bargain hard (H,H), each would gain nothing. If only one party bargains hard the accommodating party gets a benefit of $11 million while the bargaining party gets a $55 million, while if they both accommodate (A,A), they each get $33 million in benefit. a. Draw the bargaining game in normal form (a matrix). b. Does...
Consider now the following two-player simultaneous-move game, called the rock-paper-scissors-lizard game. R stands for rock, P...
Consider now the following two-player simultaneous-move game, called the rock-paper-scissors-lizard game. R stands for rock, P for paper, S for scissors, and L for lizard. R beats S but loses against P and L; P beats R but loses against S and L; S beats P and L but loses against R; L beats R and P but loses against S. The payoffs for winning is 1 and that for losing is -1; when both players choose the same strategy...
Consider the hypothetical example using game theory. Assume that it is a one-off simultaneous move game,...
Consider the hypothetical example using game theory. Assume that it is a one-off simultaneous move game, and that each player only cares about their own payoff. LG and Samsung are deciding whether or not to release a new 360-degree camera. If both LG and Samsung release the camera, then LG will make $20 million profit, and Samsung will make $40 million profit. If LG releases the camera, and Samsung does not, then LG will make $30 million profit and Samsung...
Below is a game between player A and player B. Each player has two possible strategies:...
Below is a game between player A and player B. Each player has two possible strategies: 1 or 2. The payoffs for each combination of strategies between A and B are in the bracket. For example, if A plays 1 and B plays 1, the payoff for A is -3, and the payoff for B is -2. Player B Strategy 1 Strategy 2 Player A Strategy 1 (-3,-2) (10,0) Strategy 2 (0,8) (0,0) How many pure strategy Nash equilibria does...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT