In: Finance
Let’s say that we have a 20-year mortgage with an original loan balance of $150,000 at 7% interest per year. How much money (i.e., balance) do you still owe after the 7th year of the loan? (The loan is compounded monthly)
| . | 
 1. $129,385  | 
|
| 2. | 
 Cannot be determined  | 
|
| 3. | 
 $118,902  | 
|
| 4. | 
 $133,722  | 
| Step 1 : | Calculation of monthly payment | |||||
| EMI = [P x R x (1+R)^N]/[(1+R)^N-1] | ||||||
| Where, | ||||||
| EMI= Equal Monthly Payment | ||||||
| P= Loan Amount | ||||||
| R= Interest rate per period =7%/12 =0.5833333% | ||||||
| N= Number of periods =20*12 =240 | ||||||
| = [ $150000x0.0058333333 x (1+0.0058333333)^240]/[(1+0.0058333333)^240 -1] | ||||||
| = [ $874.999995( 1.0058333333 )^240] / [(1.0058333333 )^240 -1 | ||||||
| =$1162.95 | ||||||
| Step 2 : | Calculation of loan balance after 7 years payment | |||||
| Present Value Of An Annuity | ||||||
| = C*[1-(1+i)^-n]/i] | ||||||
| Where, | ||||||
| C= Cash Flow per period | ||||||
| i = interest rate per period =7%/12 =0.583333% | ||||||
| n=number of period =(20-7) *12 = 156 | ||||||
| = $1162.95[ 1-(1+0.00583333)^-156 /0.00583333] | ||||||
| = $1162.95[ 1-(1.00583333)^-156 /0.00583333] | ||||||
| = $1162.95[ (0.5964) ] /0.00583333 | ||||||
| = $1,18,902.06 | ||||||
| \ | Correct Answer = $118902 | |||||
| NOTE: ASK YOUR QUERIES.PLEASE DO UPVOTE | ||||||