Question

In: Advanced Math

Prove the formulas given in this table for the derivatives of the functions cosh, tanh, csch, sech, and coth.

Prove the formulas given in this table for the derivatives of the functions cosh, tanh, csch, sech, and coth. Which of the following are proven correctly? (Select all that apply.)

\(\square \frac{d}{d x}(\operatorname{coth} x)=\frac{d}{d x}\left(\frac{\sinh x}{\cosh x}\right)=\frac{\cosh x \cosh x-\sinh x \sinh x}{\cosh ^{2} x}=\frac{\cosh ^{2} x-\sinh ^{2} x}{\cosh ^{2} x}=-\frac{1}{\cosh ^{2} x}=-\operatorname{csch}^{2} x\) \(\square \frac{d}{d x}(\operatorname{csch} x)=\frac{d}{d x}\left(\frac{1}{\sinh x}\right)=-\frac{\cosh x}{\sinh ^{2} x}=-\frac{1}{\sinh x} \cdot \frac{\cosh x}{\sinh x}=-\operatorname{csch} x \operatorname{coth} x\)

\(\square \frac{d}{d x}(\cosh x)=\frac{d}{d x}\left[\frac{1}{2}\left(e^{x}-e^{-x}\right)\right]=\frac{1}{2}\left(e^{x}+e^{-x}\right)=\sinh x\)

\(\square \frac{d}{d x}(\operatorname{csch} x)=\frac{d}{d x}\left(\frac{1}{\sinh x}\right)=-\frac{\cosh ^{2} x}{\sinh ^{2} x}=-\frac{1}{\sinh x} \cdot \frac{\cosh ^{2} x}{\sinh x}=-\operatorname{csch} x \operatorname{coth} x\)

\(\square \frac{d}{d x}(\operatorname{sech} x)=\frac{d}{d x}\left(\frac{1}{\cosh x}\right)=-\frac{\sinh x}{\cosh ^{2} x}=-\frac{1}{\cosh x} \cdot \frac{\sinh x}{\cosh x}=-\operatorname{sech} x \tanh x\)

Solutions

Expert Solution

Proving the formula \(\frac{d}{d x}(\operatorname{coth} x)=-\operatorname{csch}^{2} x\)

$$ \begin{aligned} &\frac{d}{d x}(\operatorname{coth} x)=\frac{d}{d x}\left(\frac{\cosh x}{\sinh x}\right) \\ &\Rightarrow \frac{d}{d x}(\operatorname{coth} x)=\left(\frac{\left.\sinh x \frac{d}{d x} \cosh x-\cosh x \frac{d}{d x} \sinh x\right)}{\sinh ^{2} x}\right) \quad[\text { By quotient rule of differentiation }] \\ &\Rightarrow \frac{d}{d x}(\operatorname{coth} x)=\left(\frac{\sinh x \cdot \sinh x-\cosh x \cdot \cosh x}{\sinh ^{2} x}\right) \quad\left[\operatorname{since} \frac{d}{d x} \sinh x=\cosh x, \frac{d}{d x} \cosh x=\sinh x\right] \\ &\Rightarrow \frac{d}{d x}(\operatorname{coth} x)=\left(\frac{\sinh ^{2} x-\cosh ^{2} x}{\sinh ^{2} x}\right) \\ &\Rightarrow \frac{d}{d x}(\operatorname{coth} x)=\left(\frac{-1}{\sinh ^{2} x}\right) \quad\left[\operatorname{sincecosh}^{2} x-\sinh ^{2} x=1\right] \\ &\Rightarrow \frac{d}{d x}(\operatorname{coth} x)=-\operatorname{csch}^{2} x \end{aligned} $$

Hence the given prove is wrong as in the given prove it is used that \(\left(\operatorname{coth} x=\frac{\sinh x}{\cosh x}\right)\).

Proving the formula \(\frac{d}{d x}(\operatorname{csch} x)=-\operatorname{csch} x \operatorname{coth} x\),

$$ \begin{aligned} &\frac{d}{d x}(\operatorname{csch} x)=\frac{d}{d x}\left(\frac{1}{\sinh x}\right) \\ &\Rightarrow \frac{d}{d x}(\operatorname{csch} x)=\left(\frac{-\frac{d}{d x} \sinh x}{\sinh ^{2} x}\right) \quad[\text { By Quotient Rule of Differentiation }] \\ &\Rightarrow \frac{d}{d x}(\operatorname{csch} x)=\left(\frac{-\cosh x}{\sinh ^{2} x}\right)\left[\operatorname{since} \frac{d}{d x} \sinh x=\cosh x\right] \\ &\Rightarrow \frac{d}{d x}(\operatorname{csch} x)=-\frac{1}{\sinh x} \frac{\cosh x}{\sinh x} \\ &\Rightarrow \frac{d}{d x}(\operatorname{csch} x)=-\operatorname{csch} x \operatorname{coth} x \end{aligned} $$

Hence the given prove is correct.

Proving the formula \(\frac{d}{d x}(\cosh x)=\sinh x\),

$$ \begin{aligned} &\frac{d}{d x}(\cosh x)=\frac{d}{d x}\left(\frac{1}{2}\left(e^{x}-e^{-x}\right)\right) \quad\left[\because \cosh x=\frac{e^{x}-e^{-x}}{2}\right] \\ &\Rightarrow \frac{d}{d x}(\cosh x)=\frac{1}{2}\left(\frac{d}{d x} e^{x}-\frac{d}{d x} e^{-x}\right) \\ &\Rightarrow \frac{d}{d x}(\cosh x)=\frac{1}{2}\left(e^{x}+e^{-x}\right) \\ &\Rightarrow \frac{d}{d x}(\cosh x)=\sinh x \quad\left[\because \sinh x=\frac{e^{x}+e^{-x}}{2}\right] \end{aligned} $$

Hence the given prove is correct.

Proving the formula \(\frac{d}{d x}(\operatorname{csch} x)=-\operatorname{csch} x \operatorname{coth} x\)

$$ \begin{aligned} &\frac{d}{d x}(\operatorname{csch} x)=\frac{d}{d x}\left(\frac{1}{\sinh x}\right) \\ &\Rightarrow \frac{d}{d x}(\operatorname{csch} x)=\left(\frac{-\frac{d}{d x} \sinh x}{\sinh ^{2} x}\right) \quad[\text { By quotient rule of differentiation }] \\ &\Rightarrow \frac{d}{d x}(\operatorname{csch} x)=\left(\frac{-\cosh x}{\sinh ^{2} x}\right)\left[\operatorname{since} \frac{d}{d x} \sinh x=\cosh x, \frac{d}{d x} \cosh x=\sinh x\right] \\ &\Rightarrow \frac{d}{d x}(\operatorname{csch} x)=-\frac{1}{\sinh x} \frac{\cosh x}{\sinh x} \\ &\Rightarrow \frac{d}{d x}(\operatorname{csch} x)=-\operatorname{csch} x \operatorname{coth} x \end{aligned} $$

Hence the given prove is wrong as in the given prove it is used that \(\left(\frac{d}{d x} \sinh x=\cosh ^{2} x\right)\).

Proving the formula \(\frac{d}{d x}(\operatorname{sech} x)=-\operatorname{sech} x \tanh x\),

$$ \begin{aligned} &\frac{d}{d x}(\operatorname{sech} x)=\frac{d}{d x}\left(\frac{1}{\cosh x}\right) \\ &\Rightarrow \frac{d}{d x}(\operatorname{sech} x)=\left(\frac{-\frac{d}{d x} \cosh x}{\cosh ^{2} x}\right) \quad \text { [By Quotient Rule of Dif } \\ &\Rightarrow \frac{d}{d x}(\operatorname{sech} x)=\left(\frac{-\sinh x}{\cosh ^{2} x}\right) \quad\left[\text { Since } \frac{d}{d x} \cosh x=\sinh x\right] \\ &\Rightarrow \frac{d}{d x}(\operatorname{sech} x)=-\frac{1}{\cosh x} \frac{\sinh x}{\cosh x} \\ &\Rightarrow \frac{d}{d x}(\operatorname{sech} x)=-\operatorname{sech} x \tanh x \end{aligned} $$

Hence the given prove is correct.


Answers can be found in the Explanation section.

 

Related Solutions

1-Prove the identity. cosh(x) + sinh(x) = ex cosh(x) + sinh(x) = 1 2 ex +...
1-Prove the identity. cosh(x) + sinh(x) = ex cosh(x) + sinh(x) = 1 2 ex + e−x + 1 2    = 1 2    = 2-Prove the identity. sinh(x + y) = sinh(x) cosh(y) + cosh(x) sinh(y) sinh(x) cosh(y) + cosh(x) sinh(y) = 1 2 (ex − e−x) 1 2    + 1 2 (ex + e−x) 1 2    = 1 4   + ex − y − e−x + y − e−x − y + ex + y...
PROVE THAT COS Z,SIN Z,cosh Z and sinh z are entire function
PROVE THAT COS Z,SIN Z,cosh Z and sinh z are entire function
Using the formulas for geometric progression to prove the formulas of growing annuity and growing perpetuity
Using the formulas for geometric progression to prove the formulas of growing annuity and growing perpetuity
Calculate the fourier series of these periodic functions f(x) = cosh(2πax + πa), x ∈ [0,...
Calculate the fourier series of these periodic functions f(x) = cosh(2πax + πa), x ∈ [0, 1) and f(x) = cos(2πax − aπ) x ∈ [0, 1). The period of these functions is 1. 1-periodic
Research the topic of hyperbolic functions and present how they and their derivatives are defined.
Research the topic of hyperbolic functions and present how they and their derivatives are defined.
describe the purpose of finding the first and second derivatives to sketch a graph of functions
describe the purpose of finding the first and second derivatives to sketch a graph of functions
For the following two functions prove whether each of the production functions has increasing, decreasing, or...
For the following two functions prove whether each of the production functions has increasing, decreasing, or constant returns to scale. Then find whether the MPL is increasing, decreasing or constant with L. A. ? = ?^1/3?^1/3 B. ? = 3?^3/2
Learning Goal: To derive the formulas for the major characteristics of motion as functions of time...
Learning Goal: To derive the formulas for the major characteristics of motion as functions of time for a horizontal spring oscillator and to practice using the obtained formulas by answering some basic questions. A block of mass m is attached to a spring whose spring constant is k. The other end of the spring is fixed so that when the spring is unstretched, the mass is located at x=0. (Figure 1). Assume that the +x direction is to the right....
Find the derivatives of each of the following functions: 1. f(x) = (3x^2 + 2x −...
Find the derivatives of each of the following functions: 1. f(x) = (3x^2 + 2x − 7)^5 (2x + 1)^8 2. g(t) = cos(e^2x2+8x−3) 3. h(x) = e^x2/tan(2x−3) 4. Find dy/dx if cos(xy) = x^2y^5
if s1 and s2 are two simple functions then prove that the max and minimum of...
if s1 and s2 are two simple functions then prove that the max and minimum of then are also simple function.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT