In: Math
            1-Prove the identity.
cosh(x) + sinh(x) = ex
cosh(x) + sinh(x)
=
1
2
ex +...
                
            1-Prove the identity.
cosh(x) + sinh(x) = ex
| cosh(x) + sinh(x) | 
= | 
ex + e−x
+
  
 | 
 | 
 | 
= | 
  
 | 
 | 
 | 
= | 
 | 
2-Prove the identity.
sinh(x + y) = sinh(x) cosh(y) + cosh(x) sinh(y)
| sinh(x) cosh(y) + cosh(x) sinh(y) | 
= | 
(ex − e−x)
  
+
(ex + e−x)
  
 | 
 | 
 | 
= | 
  + ex − y − e−x + y − e−x −
y
+
ex + y − ex − y + e−x + y −
e−x − y
 | 
 | 
 | 
= | 
  − 2e−x − y
 | 
 | 
 | 
= | 
ex + y − e−(x + y)
 | 
 | 
 | 
= | 
 | 
3-Prove the identity.
sinh(2x) = 2 sinh(x) cosh(x)
| sinh(2x) | 
= | 
sinh
x +   
 | 
 | 
 | 
= | 
sinh(x)   + cosh(x) sinh(x) | 
 | 
 | 
= | 
 | 
4-Prove the identity.
= e2x
| 
 | 
= | 
 | 
 | 
 | 
= | 
 | 
 | 
 | 
= | 
| 
ex + e−x
+
(ex − e−x
 | 
 
| 
ex + e−x
−
(ex − e−x
 | 
 
 
 | 
 | 
 | 
= | 
 | 
 | 
 | 
= | 
 | 
5-If
tanh(x) =
,
find the values of the other hyperbolic functions at
x.
| 
sinh(x) | 
= | 
 | 
| 
cosh(x) | 
= | 
 | 
| 
coth(x) | 
= | 
 | 
| 
sech(x) | 
= | 
 | 
| 
csch(x) | 
= | 
 |