In: Math
1-Prove the identity.
cosh(x) + sinh(x) = ex
cosh(x) + sinh(x)
=
1
2
ex +...
1-Prove the identity.
cosh(x) + sinh(x) = ex
cosh(x) + sinh(x) |
= |
ex + e−x
+
|
|
|
= |
|
|
|
= |
|
2-Prove the identity.
sinh(x + y) = sinh(x) cosh(y) + cosh(x) sinh(y)
sinh(x) cosh(y) + cosh(x) sinh(y) |
= |
(ex − e−x)
+
(ex + e−x)
|
|
|
= |
+ ex − y − e−x + y − e−x −
y
+
ex + y − ex − y + e−x + y −
e−x − y
|
|
|
= |
− 2e−x − y
|
|
|
= |
ex + y − e−(x + y)
|
|
|
= |
|
3-Prove the identity.
sinh(2x) = 2 sinh(x) cosh(x)
sinh(2x) |
= |
sinh
x +
|
|
|
= |
sinh(x) + cosh(x) sinh(x) |
|
|
= |
|
4-Prove the identity.
= e2x
|
= |
|
|
|
= |
|
|
|
= |
ex + e−x
+
(ex − e−x
|
ex + e−x
−
(ex − e−x
|
|
|
|
= |
|
|
|
= |
|
5-If
tanh(x) =
,
find the values of the other hyperbolic functions at
x.
sinh(x) |
= |
|
cosh(x) |
= |
|
coth(x) |
= |
|
sech(x) |
= |
|
csch(x) |
= |
|