Question

In: Computer Science

6. (5pts) Using four 1-bit full adders only to design a four-bit combinational Excess-3 to BCD...

6. (5pts) Using four 1-bit full adders only to design a four-bit combinational Excess-3 to BCD converter. Show the block diagram and label all inputs and outputs

Solutions

Expert Solution

solution:

Truth table:

  • BCD to Excess 3 code is obtained by adding 3 to the BCD code. To obtain the Excess 3 to BCD code,subtract 3 from the Excess 3 code
  • Instead of subtracting 3 from the Excess 3 code, add the 2's complement of -3. (ie 0011=>1100 is the 1's complement and give 1 as carry input so that it will become the 2's complement)

Block diagram:

Examples:

please give me thumb up


Related Solutions

a) Design and implement a combinational circuit that converts excess-3 to BCD code using 2-input NAND...
a) Design and implement a combinational circuit that converts excess-3 to BCD code using 2-input NAND gates. (Design: means show all the steps) b) Draw the logic diagram of 2x4 decoder using NOR gates only. Include an enable input. (describe in details) c) Construct a 5-to-32-line decoder with four 3-to-8 decoders with enable and a 2-to-4-line decoder. Use block diagrams for the components. (Describe in details while you are constructing the required circuit) d) Design a 2-bit multiplier using a...
1. Design a combinational circuit that coverts a 4-bit Gray code to a 4-bit Excess-3 code....
1. Design a combinational circuit that coverts a 4-bit Gray code to a 4-bit Excess-3 code. Provide detailed solution and explanation. 2. Design a double edge-triggered D flip-flop using multiplexers only. The output of the flip-flop Q should “sample” the value of the input D on both rising (+ve) and falling (-ve) edges of the clock CLK. Provide detailed solution and explanation. 3. Design an FSM counter that counts the sequence: 00, 11, 01, 10, 00, 11, ... . Provide...
Using full adders and some other gates, design subtractor that subtracts an 8-bit binary number [Y7...
Using full adders and some other gates, design subtractor that subtracts an 8-bit binary number [Y7 …. Y0] from 8-bit binary number [X7 … X0]. Write necessary equations. Draw detailed circuit diagram and explain steps & write verilog code
Design and discuss four bit BCD adder. Differentiate it from parallel adder          
Design and discuss four bit BCD adder. Differentiate it from parallel adder          
1. Design and implement a 4 bit binary to excess 3 code converter using CMOS transistors....
1. Design and implement a 4 bit binary to excess 3 code converter using CMOS transistors. (Note: Students are expected to design the circuit with truth table, solve the output expression by use of K Map or suitable circuit Reduction technique and implement using CMOS transistors.)
a.Draw the block diagram of a 4-bit ripple carry adder using full adders. Use the black...
a.Draw the block diagram of a 4-bit ripple carry adder using full adders. Use the black box of the full adder in question 1. b.Draw the block diagram of a 4-bit adder/subtractor circuit. The circuit should have an input (add/sub) that determines the operation (0: add, 1: subtract)
1) You are asked to design 4-bit Odd Number Count-Down BCD Counter making use of ONLY...
1) You are asked to design 4-bit Odd Number Count-Down BCD Counter making use of ONLY Falling Edge JK-flipflop(s) and logic gates. 2) Based on the requirements,write down: (i) state diagram (ii) excitation table (iii) input equations
Design a combinational circuit that implements a Binary-to-Grey Code converter. Your input should be a four-bit...
Design a combinational circuit that implements a Binary-to-Grey Code converter. Your input should be a four-bit binary number, and your output should be the equivalent four-bit Grey Code value. First, design the circuit using NAND gates only. Next, design the circuit using a minimal number of 2-input XOR gates.
Problem Statement: Design a combinational logic circuit that meets the following specifications: • Input: 3-bit binary...
Problem Statement: Design a combinational logic circuit that meets the following specifications: • Input: 3-bit binary integer (A), 2-bit binary integer (B). • Output: 5-bit binary integer (X) = (AxB). For example, A=6, B=2, X=6x2=12. Notation: • A=(A2,A1,A0) • B=(B1,B0) • X=(X4,X3,X2,X1,X0) Required Output: Show the truth table and a minimal logic expression for each of the outputs. Also, draw a logic diagram using discrete gates. Extra Credit: Redesign by using multiplexers and minimal discrete logic as appropriate. 1 |...
Design a 4-bit multiplier by using 4 bit full adder and write a verilog code.
Design a 4-bit multiplier by using 4 bit full adder and write a verilog code.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT