In: Civil Engineering
what is absorption technique in mining wasterwater
treatment ?
What are the Floating Adsorbents for In
Situ Treatment of Wastewater in Mine Tailing Ponds
Solution :
Absorption Technique:
Absorption spectroscopy refers to spectroscopic techniques that measure the absorption of radiation, as a function of frequency or wavelength, due to its interaction with a sample. The sample absorbs energy, i.e., photons, from the radiating field.
Adsorption phenomenon
Adsorption is a surface phenomenon with common mechanism for organic and inorganic pollutants removal. When a solution containing absorbable solute comes into contact with a solid with a highly porous surface structure, liquid–solid intermolecular forces of attraction cause some of the solute molecules from the solution to be concentrated or deposited at the solid surface. The solute retained (on the solid surface) in adsorption processes is called adsorbate, whereas, the solid on which it is retained is called as an adsorbent. This surface accumulation of adsorbate on adsorbent is called adsorption. This creation of an adsorbed phase having a composition different from that of the bulk fluid phase forms the basis of separation by adsorption technology.
In a bulk material, all the bonding requirements (be they ionic, covalent, or metallic) of the constituent atoms of the material are filled by other atoms in the material. However, atoms on the surface of the adsorbent are not wholly surrounded by other adsorbent atoms and therefore can attract adsorbates. The exact nature of the bonding depends on the details of the species involved, but the adsorption process is generally classified as physicsorption (characteristic of weak Van Der Waals forces) or chemisorption (characteristic of covalent bonding). It may also occur due to electrostatic attraction.
As the adsorption progress, an equilibrium of adsorption of the solute between the solution and adsorbent is attained (where the adsorption of solute is from the bulk onto the adsorbent is minimum). The adsorption amount (qe, mmol g−1) of the molecules at the equilibrium step was determined according to the following equation:
qe = V(Co-Ce) /Mqe = V(Co-Ce) /M
E1
where V is the solution volume (L); M is the mass of monolithic adsorbents (g); and Co and Ce are the initial and equilibrium adsorbate concentrations, respectively.
Other definition of adsorption is a mass transfer process by which a substance is transferred from the liquid phase to the surface of a solid, and becomes bound by physical and/or chemical interactions. Large surface area leads to high adsorption capacity and surface reactivity [10].
absorption technique in mining waste water treatment
The wastewater from sewage processing plants shows characteristic fluorescence signatures when excited by UV light in the 240–300 nm wavelength band. A typical signature is a spectrum having a broad band centered at about 350 nm and two relatively less intense bands centered at about 390 and 430 nm. Samples of settled sewage, treated in an aerobic digester, show a substantial reduction of the intensity of the 350 nm band and comparatively much smaller reduction of the strength of the other two bands. The biodegradable chromophoric constituent species are, therefore, considered to be the major contributors to the overall fluorescence within this band. The intensity of this band has been found to have a good correlation with the biochemical oxygen demand (BOD) parameter. This parameter is universally used for assessing the sewage strength and the suitability of the treated effluent for discharge into rivers or reservoirs. Therefore, the fluorescence technique is considered to have the potential for use in noninvasive continuous water quality monitoring thereby, enabling on-line process control in sewage treatment plants. However, fluorescence strength is affected by the pH of the sample, particularly at higher values. This has to be taken into account for the practical utilization of this technique
Types of adsorbents
Different types of adsorbents are classified into natural adsorbents and synthetic adsorbents. Natural adsorbents include charcoal, clays, clay minerals, zeolites, and ores. These natural materials, in many instances are relatively cheap, abundant in supply and have significant potential for modification and ultimately enhancement of their adsorption capabilities. Synthetic adsorbents are adsorbents prepared from Agricultural products and wastes, house hold wastes, Industrial wastes, sewage sludge and polymeric adsorbents. Each adsorbent has its own characteristics such as porosity, pore structure and nature of its adsorbing surfaces. Many waste materials used include fruit wastes, coconut shell, scrap tyres, bark and other tannin-rich materials, sawdust, rice husk, petroleum wastes, fertilizer wastes, fly ash, sugar industry wastes blast furnace slag, chitosan and seafood processing wastes, seaweed and algae, peat moss, clays, red mud, zeolites, sediment and soil, ore minerals etc.
Activated carbons as adsorbent for organic pollutants consists in their adsorption a complex process and there still exists considerable difficulty. The main cause of this difficulty results from the large number of variables involved. These include, for example, electrostatic, dispersive and chemical interactions, intrinsic properties of the solute (for example solubility and ionization constant), intrinsic properties of the adsorbent (such pore size distribution), solution properties (in particular, pH) and the temperature of the system [12].
Activated carbons (AC) (both granular activated carbon (GAC) and powdered activated carbons (PAC)) are common adsorbents used for the removal of undesirable odor, color, taste, and other organic and inorganic impurities from domestic and industrial waste water owing to their large surface area, micro porous structure nonpolar character and due to its economic viability.The major constituent of activated carbon is the carbon that accounts up to 95% of the mass weight In addition, active carbons contain other hetero atoms such as hydrogen, nitrogen, sulfur, and oxygen. These are derived from the source raw material or become associated with the carbon during activation and other preparation procedures [13-14]. Putra et al. [15] investigated the removal of Amoxicillin (antibiotic) from pharmaceutical effluents using bentonite and activated carbon as adsorbents. The study was carried out at several pH values. Langmuir and Freundlich models were then employed to correlate the equilibria data on which both models fitted the data equally well. While chemisorption is the dominant adsorption mechanism on the bentonite, both physicosorption and chemisorption played an important role for adsorption onto activated carbon.
Adsorption of methane on granular activated carbon (GAC) was studied. The results showed that with decreasing temperature or increasing methane uptake by GAC the adsorption efficacy decreased. Interactions between the methane molecules and the surface of carbon increase the density of adsorbed methane in respect to the density of compressed gas. The effect that the porosity and the surface chemistry of the activated carbons have on the adsorption of two VOC (benzene and toluene) at low concentration (200 ppm) was also studied. The results show that the volume of narrow micropores (size <0.7 nm) seems to govern the adsorption of VOC at low concentration, specially for benzene adsorption. AC with low content in oxygen surface groups has the best adsorption capacities. Among the AC tested, those prepared by chemical activation with hydroxides exhibit the higher adsorption capacities for VOC. The adsorption capacities achieved are higher than those previously shown in the literature for these conditions, especially for toluene. Adsorption capacities as high as 34 g benzene/100 g AC or 64 g toluene/100 g AC have been achieved
Organic pollutants in the ecosystem, especially persistent organic pollutants (POPs),are of the most important environmental problems in the world. The literature reviewed revealed that there has been a high increase in production and utilization of organic pollutants in last few decades resulting in a big threat of pollution. Efficient techniques for the removal of highly toxic organic compounds from water and wastewater have drawn significant interest. Adsorption is recognized as an effective and low cost technique for the removal of organic pollutants from water and wastewater, and produce high-quality treated effluent. This chapter highlighted the removal of organic pollutants using adsorption technique with different kinds of natural and synthetic adsorbents.
Many researches have given considerable attention aimed at establishing to the removal efficiency of organic pollutants by adsorption technique. To decrease treatment costs, attempts have been made to find inexpensive alternative activated carbon (AC), from waste materials of industrial, domestic and agricultural activities. Also, clays and natural clay minerals, due to their high surface area and molecular sieve structure, are very effective adsorbents for organic contaminants. The chapter focus, reviews and evaluates literature dedicated on the adsorption phenomenon, different types of natural and synthetic adsorbents, adsorption of dyes, phenols, pesticides and other organic pollutants. Finally it ended with recent researches of organic pollutants adsorption on activated carbons, clays and clay minerals.