Question

In: Physics

For multiple slit interference (a pair of slits instead of double slits): 1) Does the distance...

For multiple slit interference (a pair of slits instead of double slits):

1) Does the distance between maxima change when you change the slit width?

2) How does the distance to the first maximum of the diffraction envelope change with slit widths?

3) Predict what would happen if we used white light (light with all wavelength) instead of just a monochromatic (one wavelength) light source?

Solutions

Expert Solution

The governing formula for multiple slit interference is

where

wavelength

distance to the screen

slit width.

fringe width

Question 1

When the slit width is changed, the fringe width, which is also the distance between maxima, will change.

As they are inversely proportional, increasing the slit width decreases the distance between maxima, and decreasing it increases the distance between maxima.

Question 2

The distance to the first maximum remains constant, as its position is un altered by slit width.

Question 3

Since the fringe width is dependent on the wavelength, white light, being a mixture of lights, would give an interference pattern consisting of multiple wavelengths having fringes of different width.

The longer the wavelength, the wider the fringe.


Related Solutions

How does the single-slit diffraction pattern look in comparison to the double-slit interference pattern? Is it...
How does the single-slit diffraction pattern look in comparison to the double-slit interference pattern? Is it possible to have a double-slit pattern without the single-slit pattern overlaid?
Draw the interference pattern for a double-slit interference situation on a screen. Label the constructive and...
Draw the interference pattern for a double-slit interference situation on a screen. Label the constructive and destructive interference regions clearly with words and show the representation clearly. Indicate where the central maximum is. If a pane of glass is inserted in the gap between the slits and screen, what is the effect on the interference pattern? Draw the new pattern next to the original and explain any changes in the positionings of the pattern. Use words to explain as well...
In a Young's double-slit experiment, two parallel slits with a slit separation of 0.135 mm are...
In a Young's double-slit experiment, two parallel slits with a slit separation of 0.135 mm are illuminated by light of wavelength 579 nm, and the interference pattern is observed on a screen located 4.15 m from the slits. (a) What is the difference in path lengths from each of the slits to the location of the center of a fifth-order bright fringe on the screen? µm (b) What is the difference in path lengths from the two slits to the...
Light of wavelength illuminates a pair of slits and the first bright fringe of the interference...
Light of wavelength illuminates a pair of slits and the first bright fringe of the interference pattern is seen at an angle of o from the central maximum. Find the separation between the slits. The equation did not have the values. Please solve with details.
1) A 600 nm laser illuminates a double slit apparatus with a slit separation distance of...
1) A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double slits. What is the distance (in meters) from the central bright fringe to the 3nd dark fringe? 2) A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double slits. What is the distance (in cm) between the...
1) A 680 nm laser illuminates a double slit apparatus with a slit separation distance of...
1) A 680 nm laser illuminates a double slit apparatus with a slit separation distance of 7.83 μm. On the viewing screen, you measure the distance from the central bright fringe to the 2nd bright fringe to be 88.2 cm. How far away (in meters) is the viewing screen from the double slits?   2) A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double...
9) Monochromatic coherent light shines through a pair of slits. If the distance between these slits...
9) Monochromatic coherent light shines through a pair of slits. If the distance between these slits is decreased, which of the following statements are true of the resulting interference pattern? (There could be more than one correct choice.) A) The distance between the maxima stays the same. B) The distance between the maxima decreases. C) The distance between the minima stays the same. D) The distance between the minima increases. E) The distance between the maxima increases.
4. Light incident on a pair of slits produces an interference pattern on a screen 2.5...
4. Light incident on a pair of slits produces an interference pattern on a screen 2.5 m from the slits. Hint: Is the small-angle approximation justified in the following? (a) Determine the wavelength of the light if the slit separation is 0.0150 cm and the distance between adjacent bright fringes in the pattern is 0.760 cm. (b) Determine the distance between adjacent dark fringes if a 560 nm wavelength light source were shined through the same set up.
1) The 3rd bright fringe of a double slit interference pattern is 30.0 cm above the...
1) The 3rd bright fringe of a double slit interference pattern is 30.0 cm above the central bright fringe. If the angle from the horizontal to this 3rd bright fringe is 12.0 degrees, what is the distance (in meters) between the double slits and the viewing screen? 2) A 500 nm laser illuminates a double slit apparatus with a slit separation distance of 7.73 μm. What is the angle (in degrees) from the horizontal to the 4th bright fringe? 3)A...
In a double slit interference measurement,the 2nd diffraction minimum coincides with the m=9 interference maximum. Light...
In a double slit interference measurement,the 2nd diffraction minimum coincides with the m=9 interference maximum. Light 530nm in wavelength is used, and the distance between the slits and the screen in 1.1m, the slit width is 4μm. (a) How many full interference bright fringes can you see within the main diffraction envelope. (b) Find the slit separation? (c) What is the inter-fringe distance? (d) One of the slits is covered with a thin piece of transparent materia lof index of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT