Question

In: Physics

A horizontal rectangular piston contains 1.85 mol of a polyatomic ideal gas at a pressure of...

A horizontal rectangular piston contains 1.85 mol of a polyatomic ideal gas at a pressure of 1.013x10^5 Pa and a temperature of 322.5 C. The gas within the piston is cooled to 264.0 C. (a) If the piston undergoes an isovolumetric process, what is the change in entropy of the gas? J/K (b) If the piston undergoes an isobaric process inside the chamber, what is the change in entropy of the gas? J/K

Solutions

Expert Solution

a)   change in entropy of the gas = nCv ln (T2 / T1)

                                                    =   1.85 * 3R * ln(322.5/264.0)

                                                     =   1.85 * 3 * 8.314 * ln(322.5/264.0)

                                                     =   9.235 J/K

b)   change in entropy of the gas = nCp ln (T2 / T1)

                                                    =   1.85 * 4R * ln(322.5/264.0)

                                                     =   1.85 * 4 * 8.314 * ln(322.5/264.0)

                                                     =   12.314 J/K


Related Solutions

Consider 10 moles of an ideal polyatomic gas in a container with a frictionless piston. The...
Consider 10 moles of an ideal polyatomic gas in a container with a frictionless piston. The initial pressure is 105 kPascals and initial volume is .3 m3.   The gas is isobarically compressed to .1 m3. Determine the resulting change in entropy of the environment. (assume the temperature of the environment is a constant 28 Celsius) Group of answer choices a) +453.6 J/K b) +426.4 J/K c) +313.8 J/K d) +349.2 J/K e) +376.4 J/K
A piston contains 620 moles of an ideal monatomic gas that initally has a pressure of...
A piston contains 620 moles of an ideal monatomic gas that initally has a pressure of 2.92 × 105 Pa and a volume of 4.1 m3. The piston is connected to a hot and cold reservoir and the gas goes through the following quasi-static cycle accepting energy from the hot reservoir and exhausting energy into the cold reservoir. The pressure of the gas is increased to 5.92 × 105 Pa while maintaining a constant volume. The volume of the gas...
A piston-cylinder apparatus contains initially 1.2 mol of ideal gas at 6 bar and 25°C. Then...
A piston-cylinder apparatus contains initially 1.2 mol of ideal gas at 6 bar and 25°C. Then the piston is moved downward to increase the pressure to 12 bar pressure. You can ignore the change in potential energy associated with the piston moving. a. Write the First Law of Thermodynamics and simplify for this problem given that temperature of the system changes. b. Assuming Isothermal operation what are the initial and final volumes of gas for the above process (L)? c....
1mol of an ideal gas is inside a cylinder with a piston under a pressure of...
1mol of an ideal gas is inside a cylinder with a piston under a pressure of 6 atm. When reducing the pressure to 2 atm at constant T = 300K: (a) Who is doing work, the piston or the gas? (b) What is the type of process for the maximum work? Find the maximum amount of work. (c) What is the type of process for the minimum work? Find the minimum amount of work.
A flexible balloon contains 0.360 mol of an unknown polyatomic gas. Initially the balloon containing the...
A flexible balloon contains 0.360 mol of an unknown polyatomic gas. Initially the balloon containing the gas has a volume of 7.50 m3  and a temperature of 27.0 ∘C. The gas first expands isobarically until the volume doubles. Then it expands adiabatically until the temperature returns to its initial value. Assume that the gas may be treated as an ideal gas with Cp=33.26J/mol⋅K and γ=4/3. What is the total heat Q supplied to the gas in the process? What...
A flexible balloon contains 0.335 mol of an unknown polyatomic gas. Initially the balloon containing the...
A flexible balloon contains 0.335 mol of an unknown polyatomic gas. Initially the balloon containing the gas has a volume of 6700 cm3 and a temperature of 25.0 ∘C The gas first expands isobarically until the volume doubles. Then it expands adiabatically until the temperature returns to its initial value. Assume that the gas may be treated as an ideal gas with Cp=33.26J/mol⋅K and γ=4/3. a.) What is the total heat Q supplied to the gas in the process? b.)...
Consider a container with a frictionless piston that contains a given amount of an ideal gas....
Consider a container with a frictionless piston that contains a given amount of an ideal gas. Let’s assume that initially the external pressure is 2.20 bar, which is the sum of a 1 bar atmospheric pressure and the pressure created by a very large number of very small pebbles that rest on top of the piston. The initial volume of gas is   0.300 L   and the initial temperature is 25°C. Now, you will increase the volume of the gas by...
Consider a container with a frictionless piston that contains a given amount of an ideal gas....
Consider a container with a frictionless piston that contains a given amount of an ideal gas. Assume the initial volume of the gas is 7 L, the initial temperature of the gas is 22.1 °C, and the system is in equilibrium with an external pressure of 1.1 bar. In step 1, the gas is cooled reversibly to a final temperature -29.9 °C. The external pressure remains constant at all times. In step 2 the gas is heated at constant volume...
An engine that operates by means of an ideal diatomic ideal gas in a piston with...
An engine that operates by means of an ideal diatomic ideal gas in a piston with 2.70 moles of gas. The gas starts at point A with 3x103 Pa of pressure and 2.5x10-2 m3. To get from B from A, it is expanded by an isobaric process to double the initial volume. From B to C it expands adiabatically until it reaches three times the volume in A. From C to D the pressure decreases without changing the volume and...
A cylinder contains 4 mol of an ideal gas at 30oC.  If it expands from an initial...
A cylinder contains 4 mol of an ideal gas at 30oC.  If it expands from an initial volume of 1.0 m3 to 2.0 m3 while maintained at a constant pressure of 200 kPa. What is the change in the temperature of the gas? How much heat is absorbed or released from the system, over the process?   The pressure is then reduced while the gas is held at a constant volume. If over this process the gas is returned to its original...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT