Question

In: Physics

A solid sphere of radius 40.0 cm has a total positive charge of 44.4

A solid sphere of radius 40.0 cm has a total positive charge of 44.4

Solutions

Expert Solution

If charge is distributed uniformly in a sphere, then for finding electric field at or outside the surface, it can be assumed that the whole charge is concentrated at the centre of the sphere.
For finding electric field at a point inside the sphere, we should assume a second sphere, which is concentring with the first and goes through that point. We should ignore the charge outside the second sphere because electric field because of that charge is 0. We should consider only the charge within the second sphere.
According to Coulomb's law, the electric field at a distance r meter from a point charge q coulomb is
9 * 10^9 * q/r^2 N/C

a) 0 cm from the center means at the center. The charge is uniformly distributed. Therefore, the electric field at the center = 0.

b) Volume within sphere of radius 10.0 cm = 4/3 * pi * (10 cm)^3
Volume of the complete sphere = 4/3 * pi * (40 cm)^3
Charge per unit volume = 44.4/[4/3 * pi * (40 cm)^3]


Related Solutions

Consider a solid, insulating sphere of radius a = 5.00 cm carrying a net positive charge...
Consider a solid, insulating sphere of radius a = 5.00 cm carrying a net positive charge of Q = 3.00 μC uniformly distributed throughout its volume. Concentric with this sphere is a hollow, conducting spherical shell with inner radius b = 10.0 cm and outer radius c = 15.0 cm having a net negative charge of q = -1.00 μC. a) Give the expression from Gauss’s Law for the magnitude of electric field inside the insulating sphere for 0 ≤...
A uniformly charged dielectric solid sphere of radius a = 8 cm carries a total charge...
A uniformly charged dielectric solid sphere of radius a = 8 cm carries a total charge Q = 5 μC. Let the potential be zero an infinite distance away. a) [26.6] What is the potential at the surface of the sphere? b) [26.9] Sketch the graph of the potential due to the sphere from r = 0 to r = 20 cm. c) [26.3] What work must be done to bring a 0.2 μC point charge from infinity to a...
A solid metal sphere of radius a = 2.5 cm has a net charge Qin =...
A solid metal sphere of radius a = 2.5 cm has a net charge Qin = - 3 nC (1 nC = 10-9C). The sphere is surrounded by a concentric conducting spherical shell of inner radius b = 6 cm and outer radius c = 9 cm. The shell has a net charge Qout = + 2 nC. What is V0, the electric potential at the center of the metal sphere, given the potential at infinity is zero?
A solid nonconducting sphere of radius R = 5.5 cm has a nonuniform charge distribution of...
A solid nonconducting sphere of radius R = 5.5 cm has a nonuniform charge distribution of volume charge density ρ = (15.4 pC/m3)r/R, where r is radial distance from the sphere's center. (a) What is the sphere's total charge? What is the magnitude E of the electric field at (b) r = 0, (c) r = R/2.0, and (d) r = R?
A solid conducting sphere of radius 1.00 cm has a uniform charge of -5.00 µC. It...
A solid conducting sphere of radius 1.00 cm has a uniform charge of -5.00 µC. It is surrounded by a concentric spherical shell, with a radius of 2.50 cm, that has a uniform charge of +6.00 µC. Determine the magnitude and direction of the electric field (a) at the center of the sphere (r = 0), (b) at r = 0.500 cm, (c) at r = 2.00 cm, and (d) at r = 3.00 cm.
5) A solid conducting sphere of radius 2.00 cm has a charge of 8.00uC. A conducting...
5) A solid conducting sphere of radius 2.00 cm has a charge of 8.00uC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a charge of -4.00uC. Find the electric field at a) r= 1.00 cm b) r= 3.00 cm c) r= 4.50 cm d) r= 7.00 cm from the center of this charge configuration.
A solid nonconducting sphere of radius R = 5.7 cm has a nonuniform charge distribution of...
A solid nonconducting sphere of radius R = 5.7 cm has a nonuniform charge distribution of volume charge density ρ = (14.4 pC/m3)r/R, where r is radial distance from the sphere's center. (a) What is the sphere's total charge? What is the magnitude E of the electric field at (b) r = 0, (c) r = R/2.0, and (d) r = R?
A solid conducting sphere of radius 2.4 cm has a charge of 23 nC distributed uniformly...
A solid conducting sphere of radius 2.4 cm has a charge of 23 nC distributed uniformly over its surface. Let A be a point 1.8 cm from the center of the sphere, S be a point on the surface of the sphere, and B be a point 5.4 cm from the center of the sphere. What are the electric potential differences (a)VS – VB and (b)VA – VB?
A solid sphere of radius a is uniformly charged with a total charge Q > 0....
A solid sphere of radius a is uniformly charged with a total charge Q > 0. a. Use Gauss’s law to determine the electric field everywhere. b. Where is the magnitude of the electric field the largest? c. What is its value there? d. Find two distances from the centre of the sphere where the electric field has half of its maximum value.
A solid conducting sphere of radius a carries a net positive charge 2Q. A conducting spherical...
A solid conducting sphere of radius a carries a net positive charge 2Q. A conducting spherical shell of inner radius b and outer radius c is concentric with the solid sphere and carries a net charge –Q. Let c > b > a. a) Discuss the distribution of the charges. b) Calculate the surface charge density on the three surfaces i. radius a ii. radius b iii. radius c. c) Find the electric field in all the regions. Express this...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT