In: Statistics and Probability
Exercise 12.50 (Algorithmic)}
Consider the following data for two variables, x and
y.
xi | 135 | 110 | 135 | 150 | 175 | 160 | 125 |
yi | 145 | 105 | 120 | 120 | 135 | 130 | 115 |
a. Compute the standardized residuals for these data.
Observation 1 | |
Observation 2 | |
Observation 3 | |
Observation 4 | |
Observation 5 | |
Observation 6 | |
Observation 7 |
I got 23.13 for the first one and it was wrong
For the give data using Regression in Excel we get output as
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.615426681 | |||||
R Square | 0.37875 | |||||
Adjusted R Square | 0.2545 | |||||
Standard Error | 11.53798076 | |||||
Observations | 7 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 405.8035714 | 405.8036 | 3.04829 | 0.141260351 | |
Residual | 5 | 665.625 | 133.125 | |||
Total | 6 | 1071.428571 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 71.25 | 30.68811692 | 2.321746 | 0.067906 | -7.636315883 | 150.1363159 |
X | 0.375 | 0.214784603 | 1.745935 | 0.14126 | -0.177121399 | 0.927121399 |
RESIDUAL OUTPUT | ||
Observation | Predicted Y | Residuals |
1 | 121.875 | 23.125 |
2 | 112.5 | -7.5 |
3 | 121.875 | -1.875 |
4 | 127.5 | -7.5 |
5 | 136.875 | -1.875 |
6 | 131.25 | -1.25 |
7 | 118.125 | -3.125 |