Question

In: Advanced Math

Find f(1), f(2), f(3) and f(4) if f(n) is defined recursively by f(0)=4f(0)=4 and for n=0,1,2,…n=0,1,2,…...

Find f(1), f(2), f(3) and f(4) if f(n) is defined recursively by f(0)=4f(0)=4 and for n=0,1,2,…n=0,1,2,… by:
(a) f(n+1)=−2f(n)
f(1)=
f(2)=
f(3)=
f(4)=

(b) f(n+1)=4f(n)+5
f(1)=
f(2)=
f(3)=
f(4)=

(b) f(n+1)=f(n)2−4f(n)−2
f(1)=
f(2)=
f(3)=
f(4)=

Solutions

Expert Solution


Related Solutions

1. Find the probabilities f(0), f(1), f(2), f(3), and f(4) of a binomial distribution. Keep 4...
1. Find the probabilities f(0), f(1), f(2), f(3), and f(4) of a binomial distribution. Keep 4 decimal places in your answer. Use n=4 and p=0.15. 2. Keep 4 decimal places in your answer. About 75% of dog owners buy holiday presents for their dogs. Suppose n=4 dog owners are randomly selected. 2. Find the probability that a. at least one buys their dog holiday presents b. three or more buy their dog holiday presents c. at most three buy their...
2. The Fibonacci sequence is defined as f(n) = f(n - 1) + f(n - 2)...
2. The Fibonacci sequence is defined as f(n) = f(n - 1) + f(n - 2) with f(0) = 0 and f(1) = 1. Find f(54) by a program or maually. Note that this number must be positive and f(53) = 53.......73 (starting with 53 and ending with 73). I must admit that my three machines including a desktop are unable to find f(54) and they quit during computation. The answer is f(54) = 86267571272 */ The Java code: public...
Consider the function f(x)f(x) whose second derivative is f''(x)=5x+10sin(x)f′′(x)=5x+10sin(x). If f(0)=4f(0)=4 and f'(0)=4f′(0)=4, what is f(5)f(5)?....
Consider the function f(x)f(x) whose second derivative is f''(x)=5x+10sin(x)f′′(x)=5x+10sin(x). If f(0)=4f(0)=4 and f'(0)=4f′(0)=4, what is f(5)f(5)?. show work
Find f. f ''(x) = x−2,    x > 0,    f(1) = 0,    f(4) = 0 f(x)=
Find f. f ''(x) = x−2,    x > 0,    f(1) = 0,    f(4) = 0 f(x)=
Fibonacci Sequence in JAVA f(0) = 0, f(1) = 1, f(n) = f(n-1) + f(n-2) Part...
Fibonacci Sequence in JAVA f(0) = 0, f(1) = 1, f(n) = f(n-1) + f(n-2) Part of a code public class FS { public static void main(String[] args){ IntSequence seq = new FibonacciSequence(); for(int i=0; i<20; i++) { if(seq.hasNext() == false) break; System.out.print(seq.next()+" "); } System.out.println(" "); } } ///Fill in the rest of the code! Output 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 You should define...
Complete the following recursively defined functions. Base case ?(0)=3 Recursive case ?(?) = 3?(? − 1)...
Complete the following recursively defined functions. Base case ?(0)=3 Recursive case ?(?) = 3?(? − 1) + 7 for n ≥ 1. ?(1) = ______ f(2) = _______ f(3) = ______ f(4) = ______ Base case ?(0)=1, ?(1)=2 Recursive case ?(?) = ?(? − 1)?(? − 2) for n ≥ 2. g(2) = ______ g(3) = ______ g(4) = ______ g(5) = ______
Suppose f is defined by f(x)=3x/(4+x^2), −1≤x<3. What is the domain of f? Find the intervals...
Suppose f is defined by f(x)=3x/(4+x^2), −1≤x<3. What is the domain of f? Find the intervals where f is positive and where f is negative. Does f have any horizontal or vertical asymptotes. If so, find them, and show your supporting calculations. If not, briefly explain why not. Compute f′ and use it to determine the intervals where f is increasing and the intervals where f is decreasing. Find the coordinates of the local extrema of f Make a rough...
Fibonacci Sequence: F(0) = 1, F(1) = 2, F(n) = F(n − 1) + F(n −...
Fibonacci Sequence: F(0) = 1, F(1) = 2, F(n) = F(n − 1) + F(n − 2) for n ≥ 2 (a) Use strong induction to show that F(n) ≤ 2^n for all n ≥ 0. (b) The answer for (a) shows that F(n) is O(2^n). If we could also show that F(n) is Ω(2^n), that would mean that F(n) is Θ(2^n), and our order of growth would be F(n). This doesn’t turn out to be the case because F(n)...
A set M of numbers is defined recursively by 1. 2 and 3 belong to M...
A set M of numbers is defined recursively by 1. 2 and 3 belong to M 2. If x and y belong to M, so does x * y Which of the following numbers belong to M? 6, 9, 16, 21, 26, 54, 72, 218
Given a sequence x(n) for 0 ≤ n ≤ 3, where x(0)=4, x(1)=3, x(2)=2, and x(3)=1,...
Given a sequence x(n) for 0 ≤ n ≤ 3, where x(0)=4, x(1)=3, x(2)=2, and x(3)=1, evaluate your DFT X(k)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT