Question

In: Math

Suppose x has a distribution with μ = 19 and σ = 18. (a) If a...

Suppose x has a distribution with μ = 19 and σ = 18. (a) If a random sample of size n = 46 is drawn, find μx, σ x and P(19 ≤ x ≤ 21). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(19 ≤ x ≤ 21) = (b) If a random sample of size n = 64 is drawn, find μx, σ x and P(19 ≤ x ≤ 21). (Round σ x to two decimal places and the probability to four decimal places.) μx = σ x = P(19 ≤ x ≤ 21) = (c) Why should you expect the probability of part (b) to be higher than that of part (a)? (Hint: Consider the standard deviations in parts (a) and (b).) The standard deviation of part (b) is part (a) because of the sample size. Therefore, the distribution about μx is . Need Help? Read It

Solutions

Expert Solution

Solution :

Given that,

mean = = 19

standard deviation = = 18

a) n = 46

=   = 19

= / n = 18 / 46 = 2.65

P( 19 21)  

= P[(19 - 19) /2.65 ( - ) / (21 - 19) /2.65 )]

= P( 0.00 Z 0.75)

= P(Z 0.75 ) - P(Z 0.00 )

Using z table,  

= 0.7734 - 0.5

= 0.2734

b) n = 64

=   = 19

= / n = 18 / 64 = 2.25

P( 19 21)  

= P[(19 - 19) /2.25 ( - ) / (21 - 19) /2.25 )]

= P( 0.00 Z 0.89)

= P(Z 0.89 ) - P(Z 0.00 )

Using z table,  

= 0.8133 - 0.5

= 0.3133

c) part (b) probability is higher because standard deviation is smaller than part ( a) standard deviation


Related Solutions

Suppose x has a distribution with μ = 25 and σ = 18. (a) If a...
Suppose x has a distribution with μ = 25 and σ = 18. (a) If a random sample of size n = 34 is drawn, find μx, σ x and P(25 ≤ x ≤ 27). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(25 ≤ x ≤ 27) = (b) If a random sample of size n = 62 is drawn, find μx, σ x and P(25 ≤ x ≤...
Suppose x has a distribution with μ = 24 and σ = 18. ( a) If...
Suppose x has a distribution with μ = 24 and σ = 18. ( a) If a random sample of size n = 32 is drawn, find μx, σ x and P(24 ≤ x ≤ 26). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(24 ≤ x ≤ 26) = (b) If a random sample of size n = 67 is drawn, find μx, σ x and P(24 ≤ x...
Suppose x has a distribution with μ = 23 and σ = 18. (a) If a...
Suppose x has a distribution with μ = 23 and σ = 18. (a) If a random sample of size n = 42 is drawn, find μx, σx and P(23 ≤ x ≤ 25). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(23 ≤ x ≤ 25) = (b) If a random sample of size n = 63 is drawn, find μx, σx and P(23 ≤ x ≤ 25). (Round σx...
Suppose x has a distribution with μ = 27 and σ = 19. (a) If a...
Suppose x has a distribution with μ = 27 and σ = 19. (a) If a random sample of size n = 39 is drawn, find μx, σ x and P(27 ≤ x ≤ 29). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(27 ≤ x ≤ 29) = (b) If a random sample of size n = 64 is drawn, find μx, σ x and P(27 ≤ x ≤...
Suppose x has a distribution with μ = 11 and σ = 6. (a) If a...
Suppose x has a distribution with μ = 11 and σ = 6. (a) If a random sample of size n = 39 is drawn, find μx, σ x and P(11 ≤ x ≤ 13). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(11 ≤ x ≤ 13) = (b) If a random sample of size n = 70 is drawn, find μx, σ x and P(11 ≤ x ≤...
A. Suppose x has a distribution with μ = 23 and σ = 15. (a) If...
A. Suppose x has a distribution with μ = 23 and σ = 15. (a) If a random sample of size n = 39 is drawn, find μx, σx and P(23 ≤ x ≤ 25). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(23 ≤ x ≤ 25) = (b) If a random sample of size n = 64 is drawn, find μx, σx and P(23 ≤ x ≤ 25). (Round...
Suppose x has a distribution with μ = 21 and σ = 15. (a) If a...
Suppose x has a distribution with μ = 21 and σ = 15. (a) If a random sample of size n = 37 is drawn, find μx, σx and P(21 ≤ x ≤ 23). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(21 ≤ x ≤ 23) = (b) If a random sample of size n = 57 is drawn, find μx, σx and P(21 ≤ x ≤ 23). (Round σx...
Suppose x has a distribution with μ = 11 and σ = 10. (a) If a...
Suppose x has a distribution with μ = 11 and σ = 10. (a) If a random sample of size n = 36 is drawn, find μx, σx and P(11 ≤ x ≤ 13). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(11 ≤ x ≤ 13) = (b) If a random sample of size n = 64 is drawn, find μx, σx and P(11 ≤ x ≤ 13). (Round σx...
Suppose x has a distribution with μ = 12 and σ = 8. (a) If a...
Suppose x has a distribution with μ = 12 and σ = 8. (a) If a random sample of size n = 33 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(12 ≤ x ≤ 14) = (b) If a random sample of size n = 61 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx...
Suppose x has a distribution with μ = 12 and σ = 9. A.) If a...
Suppose x has a distribution with μ = 12 and σ = 9. A.) If a random sample of size n = 35 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx to two decimal places and the probability to three decimal places.) P(12 ≤ x ≤ 14)= B.) If a random sample of size n = 62 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx to two decimal places and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT