Question

In: Advanced Math

A particle of mass m is in a force field described by the equation,                                

A particle of mass m is in a force field described by the equation,

                                 F(x) = bx

Here b is a positive constant. At t = 0, the particle is released from the origin (x0 = 0) with an initial velocity V0

a) Build a differential equation, and use a 'trial solution' to find the position of the particle as a function of time, x(t)

b) Use the 'separating variables and integration' method to find x(t)

Solutions

Expert Solution


Related Solutions

5a) The gravitational force on a particle of mass m inside the earth at a distance...
5a) The gravitational force on a particle of mass m inside the earth at a distance r from the center (r < RE the radius of the Earth) is F = −mgr/R. Show that in an evacuated, frictionless tube, the particle would move back and forth through the tube with a simple harmonic motion and find the period of that motion.
By solving the Schrödinger equation, obtain the wave-functions for a particle of mass m in a...
By solving the Schrödinger equation, obtain the wave-functions for a particle of mass m in a one-dimensional “box” of length L
A particle of mass M moves along a straight line with initial speed vi. A force...
A particle of mass M moves along a straight line with initial speed vi. A force of magnitude Fpushes the particle a distance D along the direction of its motion. A) Find vf, the final speed of the particle after it has traveled a distance D. Express the final speed in terms of vi, M, F, and D. B) By what multiplicative factor RK does the initial kinetic energy increase, and by what multiplicative factor RW does the work done...
A quantum particle is described by a wavefunction Which of the following is the correct equation...
A quantum particle is described by a wavefunction Which of the following is the correct equation for normalization? QUESTION 4 Using the correct normalization equation from problem 3 to find the A value and use this value to replace A in the wavefunction: ψ=
A particle of mass 2.00 kg is attached to a spring with a force constant of...
A particle of mass 2.00 kg is attached to a spring with a force constant of 300 N/m. It is oscillating on a horizontal frictionless surface with an amplitude of 4.00 m. A 7.00 kg object is dropped vertically on top of the 2.00 kg object as it passes through its equilibrium point. The two objects stick together. (a) Does the amplitude of the vibrating system increase or decrease as a result of the collision? decreases increases no change (b)By...
A particle of mass 4.00 kg is attached to a spring with a force constant of...
A particle of mass 4.00 kg is attached to a spring with a force constant of 300 N/m. It is oscillating on a horizontal frictionless surface with an amplitude of 5.00 m. A 9.00 kg object is dropped vertically on top of the 4.00 kg object as it passes through its equilibrium point. The two objects stick together. a) By how much does the amplitude of the vibrating system change as a result of collision? b) By how much does...
A particle of mass 5.00 kg is attached to a spring with a force constant of...
A particle of mass 5.00 kg is attached to a spring with a force constant of 210 N/m. It is oscillating on a frictionless, horizontal surface with an amplitude of 4.00 m. A 8.00-kg object is dropped vertically on top of the 5.00-kg object as it passes through its equilibrium point. The two objects stick together. (a) What is the new amplitude of the vibrating system after the collision?_______________ (b) By what factor has the period of the system changed?______________...
Particle A of mass m, initial velocity 20i (m/s) has a collision with a stationary particle...
Particle A of mass m, initial velocity 20i (m/s) has a collision with a stationary particle B of mass 2m. After collision, VA(final)=10i+5j (m/s). a) Find VB(final) if the system (particle A plus B) linear momentum is conserved (both i and j directions). What are the velocities of center of the system before and after collision?b) Find the system’s % KE lost due to the collision (m=20.0gram). c) If the collision time between A and B is 0.050 s, what...
The motion of a particle in space is described by the vector equation ⃗r(t) = 〈sin...
The motion of a particle in space is described by the vector equation ⃗r(t) = 〈sin t, cos t, t〉 Identify the velocity and acceleration of the particle at (0,1,0) How far does the particle travel between t = 0 & t= pi What's the curvature of the particle at (0,1,0) & Find the tangential and normal components of the acceleration particle at (0,1,0)
Find the work done by the force field F in moving a particle through the path...
Find the work done by the force field F in moving a particle through the path C. That is, find    Where C is the compound path given by r(t)=<t,0,t> from (0,0,0) to (2,0,2) followed by r(t)=<2,t,2> from (2,0,2) to (2,2,2)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT