In: Finance
Compute the value of an option using the Black-Scholes formula. Underlying equity price = 50, one month to expiration, risk-free rate 0 4%, strike price = 50, volatility = 40%, dividends = 0.
THE BLACK-SCHOLES OPTION PRICING FORMULA | |||||||
INPUT PANEL: ENTER OPTION DATA | |||||||
T | 30 | Time to Maturity (days) | |||||
Sigma | 40.00% | Stock Price Volatility (enter in percentage form) | |||||
X | 50.00 | Exercise Price | |||||
r | 0.40% | Interest Rate (enter in percentage form) | |||||
S | 50.00 | Stock Price | |||||
OUTPUT PANEL: | |||||||
C | 2.29 | Black-Scholes Call Price | |||||
Delta | 0.52 | Delta (Hedge Ratio) | |||||
E | 11.42 | Elasticity* | |||||
P | 2.28 | Black-Scholes Put Price | |||||
--------------------------------------------------------------------- | |||||||
*Percent change in call from a one percent change in the stock price | |||||||
Tau | 0.08 | ||||||
SQRT(Tau) | 0.2867 | ||||||
r*Tau | 0.0003 | ||||||
Exp(-rTau) | 0.9997 | ||||||
Sigma*SQRT(Tau) | 0.1147 | ||||||
ln(S/PV(K)) | 0.0003 | ||||||
d1 | 0.0602 | ||||||
d2 | -0.0545 | ||||||
N(d1) | 0.524004 | ||||||
N(d2) | 0.47828 |