In: Finance
Compute the value of an option using the Black-Scholes formula. Underlying equity price = 50, one month to expiration, risk-free rate 0 4%, strike price = 50, volatility = 40%, dividends = 0.
| THE BLACK-SCHOLES OPTION PRICING FORMULA | |||||||
| INPUT PANEL: ENTER OPTION DATA | |||||||
| T | 30 | Time to Maturity (days) | |||||
| Sigma | 40.00% | Stock Price Volatility (enter in percentage form) | |||||
| X | 50.00 | Exercise Price | |||||
| r | 0.40% | Interest Rate (enter in percentage form) | |||||
| S | 50.00 | Stock Price | |||||
| OUTPUT PANEL: | |||||||
| C | 2.29 | Black-Scholes Call Price | |||||
| Delta | 0.52 | Delta (Hedge Ratio) | |||||
| E | 11.42 | Elasticity* | |||||
| P | 2.28 | Black-Scholes Put Price | |||||
| --------------------------------------------------------------------- | |||||||
| *Percent change in call from a one percent change in the stock price | |||||||
| Tau | 0.08 | ||||||
| SQRT(Tau) | 0.2867 | ||||||
| r*Tau | 0.0003 | ||||||
| Exp(-rTau) | 0.9997 | ||||||
| Sigma*SQRT(Tau) | 0.1147 | ||||||
| ln(S/PV(K)) | 0.0003 | ||||||
| d1 | 0.0602 | ||||||
| d2 | -0.0545 | ||||||
| N(d1) | 0.524004 | ||||||
| N(d2) | 0.47828 | ||||||