In: Finance
Find the PV of an annuity payable in arrears of $1,000 p.a. payable quarterly for 25 years at an
effective rate of interest of 6% p.a
| Step-1:Calculation of nominal rate of return | |||||||||||
| Effective rate of interest | = | ((1+(i/n))^n)-1 | Where, | ||||||||
| 0.06 | = | ((1+(i/4))^4)-1 | i | = | ? | ||||||
| 1.06 | = | (1+(i/4))^4 | n | = | 4 | ||||||
| 1.06 | ^ (1/4) | = | 1+(i/4) | ||||||||
| 1.014674 | = | 1+(i/4) | |||||||||
| 0.014674 | = | i/4 | |||||||||
| 0.058695 | = | i | |||||||||
| So, | |||||||||||
| Nominal rate of return | = | 5.87% | |||||||||
| Step-2:Calculation of PV of annuity payable in arrears | |||||||||||
| PV of annuity | = | Annuity | * | Present value of annuity of 1 | |||||||
| = | $ 250.00 | * | 52.26996 | ||||||||
| = | $ 13,067.49 | ||||||||||
| Working; | |||||||||||
| Present value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | ||||||||
| = | 52.2699612 | i | = | 5.87% | / | 4 | = | 0.014674 | |||
| n | = | 25 | * | 4 | = | 100 | |||||
| Quarterly annuity | = | $ 1,000.00 | / | 4 | |||||||
| = | $ 250.00 | ||||||||||