In: Finance
Find the PV of an annuity payable in arrears of $1,000 p.a. payable quarterly for 25 years at an
effective rate of interest of 6% p.a
Step-1:Calculation of nominal rate of return | |||||||||||
Effective rate of interest | = | ((1+(i/n))^n)-1 | Where, | ||||||||
0.06 | = | ((1+(i/4))^4)-1 | i | = | ? | ||||||
1.06 | = | (1+(i/4))^4 | n | = | 4 | ||||||
1.06 | ^ (1/4) | = | 1+(i/4) | ||||||||
1.014674 | = | 1+(i/4) | |||||||||
0.014674 | = | i/4 | |||||||||
0.058695 | = | i | |||||||||
So, | |||||||||||
Nominal rate of return | = | 5.87% | |||||||||
Step-2:Calculation of PV of annuity payable in arrears | |||||||||||
PV of annuity | = | Annuity | * | Present value of annuity of 1 | |||||||
= | $ 250.00 | * | 52.26996 | ||||||||
= | $ 13,067.49 | ||||||||||
Working; | |||||||||||
Present value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | ||||||||
= | 52.2699612 | i | = | 5.87% | / | 4 | = | 0.014674 | |||
n | = | 25 | * | 4 | = | 100 | |||||
Quarterly annuity | = | $ 1,000.00 | / | 4 | |||||||
= | $ 250.00 |