In: Finance
Question text
Find the PV of an annuity, which starts at $1 per year (payable at the end of the year) and increases by $1 per year to a value of $15, then decreases by $1 per year to the final payment of $1. Assume i = 0.07
PV is calculated as follows
Year | CF | Discount Factor | Discounted CF | ||
1 | $ 1.00 | 1/(1+0.07)^1= | 0.934579439 | 0.934579439252336*1= | 0.93 |
2 | $ 2.00 | 1/(1+0.07)^2= | 0.873438728 | 0.873438728273212*2= | 1.75 |
3 | $ 3.00 | 1/(1+0.07)^3= | 0.816297877 | 0.816297876890852*3= | 2.45 |
4 | $ 4.00 | 1/(1+0.07)^4= | 0.762895212 | 0.762895212047525*4= | 3.05 |
5 | $ 5.00 | 1/(1+0.07)^5= | 0.712986179 | 0.712986179483668*5= | 3.56 |
5 | $ 6.00 | 1/(1+0.07)^5= | 0.712986179 | 0.712986179483668*6= | 4.28 |
7 | $ 7.00 | 1/(1+0.07)^7= | 0.622749742 | 0.622749741884591*7= | 4.36 |
8 | $ 8.00 | 1/(1+0.07)^8= | 0.582009105 | 0.582009104565038*8= | 4.66 |
9 | $ 9.00 | 1/(1+0.07)^9= | 0.543933743 | 0.543933742584148*9= | 4.90 |
10 | $ 10.00 | 1/(1+0.07)^10= | 0.508349292 | 0.508349292134718*10= | 5.08 |
11 | $ 11.00 | 1/(1+0.07)^11= | 0.475092796 | 0.475092796387587*11= | 5.23 |
12 | $ 12.00 | 1/(1+0.07)^12= | 0.444011959 | 0.444011959240735*12= | 5.33 |
13 | $ 13.00 | 1/(1+0.07)^13= | 0.414964448 | 0.414964447888538*13= | 5.39 |
14 | $ 14.00 | 1/(1+0.07)^14= | 0.387817241 | 0.387817241017325*14= | 5.43 |
15 | $ 15.00 | 1/(1+0.07)^15= | 0.36244602 | 0.36244601964236*15= | 5.44 |
16 | $ 14.00 | 1/(1+0.07)^16= | 0.338734598 | 0.338734597796598*14= | 4.74 |
17 | $ 13.00 | 1/(1+0.07)^17= | 0.31657439 | 0.31657439046411*13= | 4.12 |
18 | $ 12.00 | 1/(1+0.07)^18= | 0.295863916 | 0.295863916321598*12= | 3.55 |
19 | $ 11.00 | 1/(1+0.07)^19= | 0.276508333 | 0.276508333010839*11= | 3.04 |
20 | $ 10.00 | 1/(1+0.07)^20= | 0.258419003 | 0.258419002813869*10= | 2.58 |
21 | $ 9.00 | 1/(1+0.07)^21= | 0.241513087 | 0.241513086741933*9= | 2.17 |
22 | $ 8.00 | 1/(1+0.07)^22= | 0.225713165 | 0.225713165179377*8= | 1.81 |
23 | $ 7.00 | 1/(1+0.07)^23= | 0.210946883 | 0.210946883345212*7= | 1.48 |
24 | $ 6.00 | 1/(1+0.07)^24= | 0.19714662 | 0.197146619948796*6= | 1.18 |
25 | $ 5.00 | 1/(1+0.07)^25= | 0.184249178 | 0.18424917752224*5= | 0.92 |
26 | $ 4.00 | 1/(1+0.07)^26= | 0.172195493 | 0.172195493011439*4= | 0.69 |
27 | $ 3.00 | 1/(1+0.07)^27= | 0.160930367 | 0.16093036730041*3= | 0.48 |
28 | $ 2.00 | 1/(1+0.07)^28= | 0.150402212 | 0.15040221243029*2= | 0.30 |
29 | $ 1.00 | 1/(1+0.07)^29= | 0.140562815 | 0.140562815355411*1= | 0.14 |
PV = Sum of all Discounted CF | 89.04 |
PV comes to 89.04