Find the derivative of the function
f(t)=arccsc〖(-t^2)〗
f(x)=arccot√x
y=ln〖t^2 〗-arctan〖t/2〗
f(x)=arcsecx+arccscx
y=arctan〖x/2〗+1/(2(x^2+4))
Use implicit differentiation to find an equation of
the tangent line the graph of the equation at the given
point.
arctan(x+y)=y^2+π/4, (1,0)
For the function
a) f(x)=x^3-9x^2+23x-15
b)f(x)=(x+3)^2(2x+1)(x-1)
c)f(x)=-(x^2-6x+9)(x^2-x-6)
Find:
1) the zeros
2) the y-intercept
3) left-right end behavior
4) the sketch of the graph
Let f(t)=5t2−t.
a) Find f(t+h):
b) Find f(t+h)−f(t):
c) Find f(t+h)−f(t)/h: side note: (f(t+h)=f(t) is on top of
fraction and h is on bottom)
d) Find f′(t):
pls circle the 4 answers
Let f ( x , y ) = x^ 2 + y ^3 + sin ( x ^2 + y ^3 ). Determine
the line integral of f ( x , y ) with respect to arc length over
the unit circle centered at the origin (0, 0).