Question

In: Statistics and Probability

SAT scores have an average of 1200 with a standard deviation of 60. a. For a...

SAT scores have an average of 1200 with a standard deviation of 60.

a. For a sample of 36, what is the probability that the sample mean will be within 5 points of the mean?
b. For a sample of 36, what is the probability that the sample mean will be with 10 points of the mean?
c. For a sample of 100, what is the probability that the sample mean will be within 5 points of the mean?
d. For a sample of 100, what is the probability that the sample mean will be with 10 points of the mean?

Solutions

Expert Solution

a.

b.

c.

d.


Related Solutions

1. The SAT test scores have an average value of 1200 with a standard deviation of...
1. The SAT test scores have an average value of 1200 with a standard deviation of 100. A random sample of 35 scores is selected for study. A) What is the shape, mean(expected value) and standard deviation of the sampling distribution of the sample mean for samples of size 35? B) What is the probability that the sample mean will be larger than 1235? C) What is the probability that the sample mean will fall within 25 points of the...
The SAT test scores have an average value of 1200 with a standard deviation of 100....
The SAT test scores have an average value of 1200 with a standard deviation of 100. A random sample of 35 scores is selected for the study. A) What are the shape, mean(expected value) and standard deviation of the sampling distribution of the sample mean for samples of size 35? B) What is the probability that the sample mean will be larger than 1235? C) What is the probability that the sample mean will fall within 25 points of the...
1. The SAT test scores have an average value of 1200 with a standard deviation of...
1. The SAT test scores have an average value of 1200 with a standard deviation of 105. A random sample of 35 scores is selected for study. A) What is the shape, mean(expected value) and standard deviation of the sampling distribution of the sample mean for samples of size 35? B) What is the probability that the sample mean will be larger than 1235? C) What is the probability that the sample mean will fall within 25 points of the...
SAT scores have a mean of 1000 and a standard deviation of 220. Q18: What is...
SAT scores have a mean of 1000 and a standard deviation of 220. Q18: What is the probability that a random student will score more than 1400? Q19: Using the Central Limit Theorem, what is the probability that sample of 100 students will have an average score less than 990? Q20: Using the Central Limit Theorem, what is the probability that sample of 100 students will have an average score between 990 and 1010? Use excel functions to calculate your...
SAT scores of students at an Ivy League college are distributed with a standard deviation of...
SAT scores of students at an Ivy League college are distributed with a standard deviation of 250 points. Two statistics students, Raina and Luke, want to estimate the average SAT score of students at this college as part of a class project. They want their margin of error to be no more than 25 points. (a) Raina wants to use a 90% condence interval. How large a sample should she collect?Raina should sample at least  people. (b) Luke wants to use...
SAT verbal scores are normally distributed with a mean of 430 and a standard deviation of...
SAT verbal scores are normally distributed with a mean of 430 and a standard deviation of 120 (based on data from the College Board ATP). If a sample of 35 students are selected randomly, find the probability that the sample mean is above 470. A.) 0.244 B.) 0.9756 C.) 0.0445 D.) 0.0244
1. SAT scores are distributed with a mean of 1,500 and a standard deviation of 300....
1. SAT scores are distributed with a mean of 1,500 and a standard deviation of 300. You are interested in estimating the average SAT score of first year students at your college. If you would like to limit the margin of error of your 95% confidence interval to 25 points, how many students should you sample Make sure to give a whole number answer. 2. You measure 26 textbooks' weights, and find they have a mean weight of 69 ounces....
Assume that SAT scores are normally distributed with a mean of 1000 and a standard deviation...
Assume that SAT scores are normally distributed with a mean of 1000 and a standard deviation of 150. Use this information to answer the following questions. Round final answers to the nearest whole number. What is the lowest SAT score that can be in the top 10% of testers? What is the highest SAT score that can be in the bottom 5% of testers? Between which two SAT scores do the middle 50% of testers lie?
A. The average SAT score of students is 1110, with a standard deviation ≈ 120. If...
A. The average SAT score of students is 1110, with a standard deviation ≈ 120. If a sample of n = 25 students is selected, what is the probability that the sample mean would be > 1150? That is, what is p(M>1150)? B. Which of the following will decrease statistical power? SELECT ALL THAT APPLY. a smaller sample size a larger effect size a larger standard deviation a larger alpha
Scores on the SAT exam approximate a normal distribution with mean 500 and standard deviation of...
Scores on the SAT exam approximate a normal distribution with mean 500 and standard deviation of 80. USe the distribution to determine the following. (Z score must be rounded to two decimal places: (a) The Z- score for a SAT of 380 (2pts) (b) The percent of SAT scores that fall above 610 (3pts) (c) The prpbability that sn SAT score falls below 720 (3pts) (d) The percentage of SAT scores that fall between 470 and 620 (4pts)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT