Question

In: Statistics and Probability

Let Y1,Y2,...,Yn be a Bernoulli distributed random sample with P(Yi = 1) = p and P(Yi...

Let Y1,Y2,...,Yn be a Bernoulli distributed random sample with P(Yi = 1) = p and P(Yi = 0) = 1−p for all i.

(a) Prove that E(¯ Y ) = p and V (¯ Y ) = p(1−p)/n2, for the sample mean ¯ Y of Y1,Y2,...,Yn, and find a sufficient statistic U for p and show it is sufficient for p.

(b) Find MVUE for p and show it is unbiased for p.

Solutions

Expert Solution


Related Solutions

Let Y1, Y2, . . ., Yn be a random sample from a uniform distribution on...
Let Y1, Y2, . . ., Yn be a random sample from a uniform distribution on the interval (θ - 2, θ). a) Show that Ȳ is a biased estimator of θ. Calculate the bias. b) Calculate MSE( Ȳ). c) Find an unbiased estimator of θ. d) What is the mean square error of your unbiased estimator? e) Is your unbiased estimator a consistent estimator of θ?
Let Y1, Y2, ..., Yn be a random sample from an exponential distribution with mean theta....
Let Y1, Y2, ..., Yn be a random sample from an exponential distribution with mean theta. We would like to test H0: theta = 3 against Ha: theta = 5 based on this random sample. (a) Find the form of the most powerful rejection region. (b) Suppose n = 12. Find the MP rejection region of level 0.1. (c) Is the rejection region in (b) the uniformly most powerful rejection region of level 0.1 for testing H0: theta = 3...
Suppose that Y1 ,Y2 ,...,Yn is a random sample from distribution Uniform[0,2]. Let Y(n) and Y(1)...
Suppose that Y1 ,Y2 ,...,Yn is a random sample from distribution Uniform[0,2]. Let Y(n) and Y(1) be the order statistics. (a) Find E(Y(1)) (b) Find the density of (Y(n) − 1)2 (c) Find the density of Y(n) − Y (1)
Consider a random sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) where Y...
Consider a random sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) where Y | X = x is modeled by Y=β0+β1x+ε, ε∼N(0,σ^2), where β0,β1and σ^2 are unknown. Let β1 denote the mle of β1. Derive V(βhat1).
Let Y1, Y2, . . . , Y20 be a random sample of size n =...
Let Y1, Y2, . . . , Y20 be a random sample of size n = 20 from a normal distribution with unknown mean µ and known variance σ 2 = 5. We want to test H0; µ = 7 vs. Ha : µ > 7. (a) Find the uniformly most powerful test with significance level 0.05. (b) For the test in (a), find the power at each of the following alternative values of µ: µa = 7.5, 8.0, 8.5,...
Let Y1 < Y2 < Y3 < Y4 be the order statistics of a random sample...
Let Y1 < Y2 < Y3 < Y4 be the order statistics of a random sample of size n = 4 from a distribution with pdf f(x) = 3X2, 0 < x < 1, zero elsewhere. (a) Find the joint pdf of Y3 and Y4. (b) Find the conditional pdf of Y3, given Y4 = y4. (c) Evaluate E(Y3|y4)
The observations are Y1, . . . , Yn. The model is Yi = βxi +...
The observations are Y1, . . . , Yn. The model is Yi = βxi + i , i = 1, . . . , n, where (i) x1, . . . , xn are known constants, and (ii) 1, . . . , n are iid N(0, σ2 ). Find the MLEs of β and σ^ 2 . Are they jointly sufficient for β and σ ^2 ?
Suppose that X1, X2, , Xm and Y1, Y2, , Yn are independent random samples, with...
Suppose that X1, X2, , Xm and Y1, Y2, , Yn are independent random samples, with the variables Xi normally distributed with mean μ1 and variance σ12 and the variables Yi normally distributed with mean μ2 and variance σ22. The difference between the sample means, X − Y, is then a linear combination of m + n normally distributed random variables and, by this theorem, is itself normally distributed. (a) Find E(X − Y). (b) Find V(X − Y). (c)...
Let Y = (Y1, Y2,..., Yn) and let θ > 0. Let Y|θ ∼ Pois(θ). Derive...
Let Y = (Y1, Y2,..., Yn) and let θ > 0. Let Y|θ ∼ Pois(θ). Derive the posterior density of θ given Y assuming the prior distribution of θ is Gamma(a,b) where a > 1. Then find the prior and posterior means and prior and posterior modes of θ.
1. . Let X1, . . . , Xn, Y1, . . . , Yn be...
1. . Let X1, . . . , Xn, Y1, . . . , Yn be mutually independent random variables, and Z = 1 n Pn i=1 XiYi . Suppose for each i ∈ {1, . . . , n}, Xi ∼ Bernoulli(p), Yi ∼ Binomial(n, p). What is Var[Z]? 2. There is a fair coin and a biased coin that flips heads with probability 1/4. You randomly pick one of the coins and flip it until you get a...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT