In: Finance
A 10-year annuity of 20 $8,900 semiannual payments will begin 11 years from now, with the first payment coming 11.5 years from now. If the discount rate is 8 percent compounded semiannually, what is the value of this annuity ten years and eight years from now? (Do not round intermediate calculations and round your answers to 2 decimal places, e.g., 32.16.) What is the value of the annuity today?
The question is based on the time value of money. | |||||||||||||
Step-1:Calculation of Value of annuity 11 years from now | |||||||||||||
Present value of annuity 11 years from now | = | Annuity x Present Value of annuity of 1 | |||||||||||
= | $ 8,900 | x | 13.59033 | ||||||||||
= | $ 1,20,953.90 | ||||||||||||
Working: | |||||||||||||
Present Value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | ||||||||||
= | (1-(1+0.04)^-20)/0.04 | i | 8%/2 | = | 0.04 | ||||||||
= | 13.59033 | n | 10*2 | = | 20 | ||||||||
Step-2:Calculation of Value of annuity 10 years from now | |||||||||||||
Present Value | = | Above Value x Discount factor | |||||||||||
= | $ 1,20,953.90 | x (1.04^-2) | |||||||||||
= | $ 1,11,828.68 | ||||||||||||
Step-3:Calculation of value of annuity 8 years from now | |||||||||||||
Present Value | = | Above Value x Discount factor | |||||||||||
= | $ 1,11,828.68 | x (1.04^-4) | |||||||||||
= | $ 95,591.63 | ||||||||||||
Step-4:Calculation of Value of annuity today | |||||||||||||
Value of annuity today | = | Above Value x Discount factor | |||||||||||
= | $ 95,591.63 | x (1.04^-16) | |||||||||||
= | $ 51,037.15 | ||||||||||||
Thus | |||||||||||||
Present Value of annuity | |||||||||||||
Value of annuity ten years from now | $ 1,11,828.68 | ||||||||||||
Value of annuity eight years from now | $ 95,591.63 | ||||||||||||
Value of annuity today | $ 51,037.15 | ||||||||||||