Question

In: Chemistry

Suppose that the microwave radiation has a wavelength of 12.4 cm. How many photons are required...

Suppose that the microwave radiation has a wavelength of 12.4 cm. How many photons are required to heat 305 mL of coffee from 25.0 ∘C to 62.0 ∘C? Assume that the coffee has the same density, 0.997 g/mL , and specific heat capacity, 4.184 J/(g⋅K) , as water over this temperature range.

Solutions

Expert Solution

Density of coffee = 0.997 g/mL

Volume of coffee = 305 mL

Mass of coffee = Density Volume = 305 0.997 = 304.085 g Coffee

q = mCpT

Cp = heat capacity = 4.184 J/(g.K)
m = mass = 304.085 g
T = change in temperature = 62-25 = 37oC

q = 304.085 4.184 37 = 47074.79 J

To raise the temperature of the coffee, you need that many joules to heat it up. You now have to find the energy of the photon at the microwave wavelength.

E = hc/

h = planck constant = 6.626 10-34 Js
c = speed of light = 3 108 m/s
= wavelength = 12.4 cm = 0.124 m

E = (6.626 10-34)(3 108)/0.124 = 1.603 10-24

The energy of a photon with a wavelength of 12.4 cm is 1.603 10-24 J. You want to know how many photons would make 34727.30 J, so:

47074.79 J / (1.603 10-24/photon) = 2.94 1028 photons


Related Solutions

Suppose that the microwave radiation has a wavelength of 12.4 cm . How many photons are...
Suppose that the microwave radiation has a wavelength of 12.4 cm . How many photons are required to heat 205 mL of coffee from 25.0 ∘C to 62.0 ∘C? Assume that the coffee has the same density, 0.997 g/mL , and specific heat capacity, 4.184 J/(g⋅K) , as water over this temperature range.
Suppose that the microwave radiation has a wavelength of 12.4 cm . How many photons are...
Suppose that the microwave radiation has a wavelength of 12.4 cm . How many photons are required to heat 285 mL of coffee from 25.0 ∘C to 62.0 ∘C? Assume that the coffee has the same density, 0.997 g/mL , and specific heat capacity, 4.184 J/(g⋅K) , as water over this temperature range. Express the number of photons numerically.
suppose that the microwave radiation has a wavelength of 11.6 cm . How many photons are...
suppose that the microwave radiation has a wavelength of 11.6 cm . How many photons are required to heat 245 ml of coffee from 25.0 °C to 62°C? Assume that the coffee has the same density 0.997 g/mL and specific heat capacity of 4.184 J/ (g•K), as water over this temperature range.
Suppose that the microwave radiation has a wavelength of 12 cm . How many photons are...
Suppose that the microwave radiation has a wavelength of 12 cm . How many photons are required to heat 305 mL of coffee from 25.0 ∘C to 62.0 ∘C? Assume that the coffee has the same density, 0.997 g/mL , and specific heat capacity, 4.184 J/(g⋅K) , as water over this temperature range.
Suppose that the microwave radiation has a wavelength of 10.8 cm . How many photons are...
Suppose that the microwave radiation has a wavelength of 10.8 cm . How many photons are required to heat 295 mL of coffee from 25.0 ∘C to 62.0 ∘C? Assume that the coffee has the same density, 0.997 g/mL , and specific heat capacity, 4.184 J/(g⋅K) , as water over this temperature range. Express the number of photons numerically.
Microwaves can cause tissue damage. For a microwave, emitting energy, wavelength = 12cm, how many photons...
Microwaves can cause tissue damage. For a microwave, emitting energy, wavelength = 12cm, how many photons must be absorbed to raise the temperature of a human eyeball 3 C? Mass of the eye =11g, specific heat of the eyeball is 4.0 J/g K.
How are gamma photons involved in beta radiation?
How are gamma photons involved in beta radiation?
4. Find the wavelength of radiation whose photons have energy equal to 1.4 eV. i. 0.34...
4. Find the wavelength of radiation whose photons have energy equal to 1.4 eV. i. 0.34 ?m ii. 0.89 ?m iii. 1.2 ?m iv. 1.7 ?m 5. Explain (in words, not equations) what the Betz limit is and how it is derived.
Cosmic microwave background Q: How is the CMB cosmic? Microwave? Background? Radiation? Q: What are observed...
Cosmic microwave background Q: How is the CMB cosmic? Microwave? Background? Radiation? Q: What are observed CMB properties? Q: What is the last scattering surface? Q: How does CMB verify the Cosmological Principle? Q: What are the three possibilities for the cosmic geometry? How does CMB tell us about the geometry of the universe?
What is the the frequency (in MHz) of x-rays radiation that has a wavelength of 0.06830...
What is the the frequency (in MHz) of x-rays radiation that has a wavelength of 0.06830 nanometers? The speed of light is 3.00x108 m/s.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT