Question

In: Mechanical Engineering

Consider a steam power plant that operates on a regenerative Rankine cycle and has a net...

Consider a steam power plant that operates on a regenerative Rankine cycle and has a net power output of 150 MW. Steam enters the turbine at 10 MPa and 500°C and the condenser at 10 kPa. The isentropic efficiency of the turbine is 80 percent, and that of the pumps is 95 percent. Steam is extracted from the turbine at 0.5 MPa to heat the feedwater in an open feedwater heater. Water leaves the feedwater heater as a saturated liquid. Show the cycle on a T-s diagram, and determine (a) the mass flow rate of steam through the boiler, and (b) the thermal efficiency of the cycle. Also, determine the exergy destruction associated with the regeneration process. Assume a source temperature of 1300 K and a sink temperature of 303 K.

Solutions

Expert Solution


Related Solutions

Consider a steam power plant that operates on a reheat Rankine cycle and has a net...
Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500°C and the low-pressure turbine at 1 MPa and 500°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 78 percent and that of the pump is 95 percent. a.)Determine the quality (or temperature, if superheated) of the...
Consider a steam power plant that operates on a reheat Rankine cycle and has a net...
Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500°C and the low-pressure turbine at 1 MPa and 500°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 80 percent, and that of the pump is 95 percent. Show the cycle on a T-s diagram with respect...
Consider a steam power plant that operates on a reheat Rankine cycle and has a net...
Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500°C and the low-pressure turbine at 1 MPa and 500°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 76 percent and that of the pump is 95 percent. A: Determine the quality (or temperature, if superheated) of...
A steam power plant operates on a regenerative Rankine cycle. Steam enters the turbine at 6...
A steam power plant operates on a regenerative Rankine cycle. Steam enters the turbine at 6 MPa at 700 ºC and the condenser at 10 kPa. Turbine has isentropic efficiency of 85% and pumps have isentropic efficiency of 90%. Steam is extracted from the turbine at 0.6 MPa to heat the feedwater in an open feedwater heater. Water leaves the open feedwater heater as saturated liquid. a) Draw the system with labels and show the ideal and the non-ideal cycle...
A steam power plant operates on an ideal regenerative Rankine cycle. Steam enters the turbine at...
A steam power plant operates on an ideal regenerative Rankine cycle. Steam enters the turbine at 6 MPa and 450oC and is condensed in the condenser at 20 kPa. Steam is extracted from the turbine at 0.4 MPa to heat the feedwater in an open feedwater heater. Water leaves the feedwater heater as a saturated liquid. Show the cycle on a T-s diagram and determine the fraction of steam extracted from the turbine for the open feedwater heater.
A steam power plant operates on a regenerative Rankine cycle with two feedwater heaters, one closed...
A steam power plant operates on a regenerative Rankine cycle with two feedwater heaters, one closed and one open. Steam enters the turbine at 12.5 MPa and 550ºC and exhausts to the condenser at 10 kPa. Steam is extracted from the turbine at 1 MPa for the closed feedwater heater and 0.8 MPa for the open one. The feedwater is heated to the condensation temperature of the extracted steam in the closed feedwater heater. The extracted steam leaves the closed...
A steam power plant operates on a practical Rankine Cycle. The steam enters the turbine at...
A steam power plant operates on a practical Rankine Cycle. The steam enters the turbine at 3 MPa and “648” K and is condensed in the condenser at a pressure of 46 kPa. You are assigned on a project to improve the thermal efficiency of this plant. a) Draw the schematic of the plant and determine the thermal efficiency of the practical cycle assuming that the efficiencies of pump and turbine are 0.75 and 0.7, respectively. ( b) Draw a...
Design a steam power plant that works as an ideal Regenerative Rankine cycle with 2 closed...
Design a steam power plant that works as an ideal Regenerative Rankine cycle with 2 closed feedwater heaters cascaded backwards by selecting their extraction pressures to optimize cycle efficiency. The available steam conditions at the exit of the boiler are 3 MPa and 590 °C and the condenser pressure is 20 kPa. The steam flow rate at the inlet of the turbine is 80 kg/s. A T-s diagram for the cycle should be provided along with a table showing the...
Consider a steam power plant operating on a simple ideal Rankine cycle and having a net...
Consider a steam power plant operating on a simple ideal Rankine cycle and having a net power output of 57 MW. The steam enters the turbine at 9 MPa and 575 ° C and exits at 150 ° C, then it is cooled in the condenser to a pressure of 100 kPa by means of the cooling water from a lake and that circulates through the condenser tubes to a rate of 1370 kg / s. Consider leaving the pump...
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine...
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine at 4 MPa and 500 C and leaves it at 50 kPa and 150 C. the water leaves the condenser as a saturated liquid and is subsequently displaced to the boiler by means of a pump at a temperature of 85 C, which is the isentrophic efficiency of the turbine?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT