In: Statistics and Probability
Use the accompanying paired data consisting of registered boats? (tens of? thousands) and manatee fatalities from boat encounters. Let x represent the number of registered boats and let y represent the corresponding number of manatee deaths. Use the given number of registered boats and the given confidence level to construct a prediction interval estimate of manatee deaths. Use = 87 (for 87?0,000 registered? boats) with a 99?% confidence level.
Find the indicated prediction interval.
__ manatees < y < __ manatees
|
|||||||||||||||||
Boats ?(tens of? thousands) |
Manatees |
||||||||||||||||
65 |
51 |
||||||||||||||||
70 |
38 |
||||||||||||||||
66 |
36 |
||||||||||||||||
72 |
51 |
||||||||||||||||
69 |
41 |
||||||||||||||||
70 |
58 |
||||||||||||||||
75 |
55 |
||||||||||||||||
82 |
65 |
||||||||||||||||
85 |
83 |
||||||||||||||||
87 |
80 |
||||||||||||||||
92 |
82 |
||||||||||||||||
95 |
96 |
||||||||||||||||
91 |
73 |
||||||||||||||||
97 |
69 |
||||||||||||||||
98 |
80 |
||||||||||||||||
100 |
90 |
||||||||||||||||
97 |
72 |
||||||||||||||||
99 |
92 |
||||||||||||||||
95 |
97 |
||||||||||||||||
88 |
84 |
||||||||||||||||
89 |
89 |
||||||||||||||||
85 |
81 |
||||||||||||||||
90 |
71 |
||||||||||||||||
88 |
70 |
The statistical software output for this problem is:
Simple linear regression results:
Dependent Variable: Manatees
Independent Variable: Boats
Manatees = -46.112894 + 1.3744301 Boats
Sample size: 24
R (correlation coefficient) = 0.85874173
R-sq = 0.73743737
Estimate of error standard deviation: 9.5288474
Parameter estimates:
Parameter | Estimate | Std. Err. | Alternative | DF | T-Stat | P-value |
---|---|---|---|---|---|---|
Intercept | -46.112894 | 15.025093 | ? 0 | 22 | -3.0690589 | 0.0056 |
Slope | 1.3744301 | 0.17484982 | ? 0 | 22 | 7.8606318 | <0.0001 |
Analysis of variance table for regression
model:
Source | DF | SS | MS | F-stat | P-value |
---|---|---|---|---|---|
Model | 1 | 5610.4235 | 5610.4235 | 61.789532 | <0.0001 |
Error | 22 | 1997.5765 | 90.798932 | ||
Total | 23 | 7608 |
Predicted values:
X value | Pred. Y | s.e.(Pred. y) | 99% C.I. for mean | 99% P.I. for new |
---|---|---|---|---|
87 | 73.462521 | 1.9701341 | (67.909193, 79.015848) | (46.034943, 100.8901) |
Hence,
99% prediction interval will be:
46.035 < y < 100.890