Question

In: Statistics and Probability

8-5 (30) X and Y are independent random variables, and both are normally distributed with mean...

8-5 (30) X and Y are independent random variables, and both are normally distributed with mean zero and variance one. Two new random variables. Z and W are defined by Z = X2 + Y2 , W = X/Y

(14) a). Find fz.w(z.w)indicating the domains over which it is defined.

(10) b) Find the marginal densities fW (w) and fZ (z) and the domain of each.

(6) c) Are Z and W independent? Explain

Solutions

Expert Solution


Related Solutions

8-5 (30) X and Y are independent random variables, and both are normally distributed with mean...
8-5 (30) X and Y are independent random variables, and both are normally distributed with mean zero and variance one. Two new random variables. Z and W are defined by Z = X2 + Y2 , W = X/Y (14) a). Find fz.w(z.w)indicating the domains over which it is defined. (6) b). Are Z and W independent? Explain your answer. (10) c) Find the marginal densities fW (w) and fZ (z) and the domain of each.
Suppose that z = xy, where x and y are independent and normally distributed random variables
Suppose that z = xy, where x and y are independent and normally distributed random variables. The mean and variance of x are µx = 10 and σ2x = 2. The mean and variance of y are µy = 15 and σ2y = 3. Find the mean and variance of z by simulation. Does µz = µxµy? Does σ2z = σ2x σ2y? Do this for 100, 1000, and 5000 trials.
Suppose that X and Y are two normally distributed random variables. X has mean 2 and...
Suppose that X and Y are two normally distributed random variables. X has mean 2 and standard deviation 3.Y has mean 3 and standard deviation 2. Their correlation is 0.6 . What is the mean and standard deviation of X + Y ?What is the distribution of X + Y ? What if X and Y are jointly normally distributed? What if they are not jointly normally distributed? Explain your answer.
Suppose that X and Y are two normally distributed random variables. X has mean 2 and...
Suppose that X and Y are two normally distributed random variables. X has mean 2 and standard deviation 3.Y has mean 3 and standard deviation 2. Their correlation is 0.6 . What is the mean and standard deviation of X + Y? What is the distribution of X + Y? What if X and Y are jointly normally distributed? What if they are not jointly normally distributed? Explain your answer. (Why we cannot conclude if they are not jointly normally...
5. X is a normally distributed random variable with a mean of 8 and a standard...
5. X is a normally distributed random variable with a mean of 8 and a standard deviation of 3. The probability that X is between 6 and 10 is a. 0.7486 b. 0.4972 c. 0.6826 d. 0.8413 The weight of football players is normally distributed with a mean of 200 pounds and a standard deviation of 20 pounds. 6. The probability of a player weighing more than 240 pounds is a. 0.0197 b. 0.9803 c. 0.4803 d. 0.0228 7. Refer...
A random variable X is Normally distributed with mean = 75 and = 8. Let Y...
A random variable X is Normally distributed with mean = 75 and = 8. Let Y be a second Normally distributed random variable with mean = 70 and = 12. It is also known that X and Y are independent of one another. Let W be a random variable that is the difference between X and Y (i.e., W = X – Y). What can be said about the distribution of W?
Suppose X and Y are independent random variables with X = 2:8 and Y = 3:7....
Suppose X and Y are independent random variables with X = 2:8 and Y = 3:7. Find X+Y , the standard deviation of X + Y .
Let X, Y be independent exponential random variables with mean one. Show that X/(X + Y...
Let X, Y be independent exponential random variables with mean one. Show that X/(X + Y ) is uniformly distributed on [0, 1]. (Please solve it with clear explanations so that I can learn it. I will give thumbs up.)
1. Given that the random variable X is normally distributed with a mean of 30 and...
1. Given that the random variable X is normally distributed with a mean of 30 and a standard deviation of 5, determine the following: P(32.2 <X). 2. The pdf(probability distribution function) of a random variable X is given by f(x) = 3x^2 with support 0<x<1. Determine P(0.4 < X < 0.6).
A: Suppose two random variables X and Y are independent and identically distributed as standard normal....
A: Suppose two random variables X and Y are independent and identically distributed as standard normal. Specify the joint probability density function f(x, y) of X and Y. Next, suppose two random variables X and Y are independent and identically distributed as Bernoulli with parameter 1 2 . Specify the joint probability mass function f(x, y) of X and Y. B: Consider a time series realization X = [10, 15, 23, 20, 19] with a length of five-periods. Compute the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT