In: Finance
Using a cost of capital of 13%, calculate the net present value for the project shown in the following table and indicate whether it is acceptable, LOADING.... The net present value (NPV) of the project is $
Initial investment -1,151,000
Year Cash inflows
1 84,000
2 136,000
3 192,000
4 255,000
5 318,000
6 382,000
7 277,000
8 100,000
9 42,000
10 25,000
present value factor = 1/(1+r)^n
here,
r=13%=>0.13.
n=0,1,2,3,4,5,6,7,8,9,10.
The following is the calculation of net present value;
year | cash flow | PV factor | cash flow* PV factor |
0 | -1,151,000 | 1/(1.13)^0=>1 | (-1,151,000*1)=>-1,151,000 |
1 | 84,000 | 1/(1.13)^1=>0.88496 | (84,000*0.88496)=>74,336.64 |
2 | 136,000 | 1/(1.13)^2=>0.78315 | (136,000*0.78315)=>106,508.40 |
3 | 192,000 | 1/(1.13)^3=>0.69305 | (192,000*0.69305)=>133,065.60 |
4 | 255,000 | 1/(1.13)^4=>0.61332 | (255,000*0.61332)=>156,396.66 |
5 | 318,000 | 1/(1.13)^5=>0.54276 | (318,000*0.54276)=>172,597.68 |
6 | 382,000 | 1/(1.13)^6=>0.48032 | (382,000*0.48032)=>183,482.24 |
7 | 277,000 | 1/(1.13)^7=>0.42506 | (277,000*0.42506)=>117,741.62 |
8 | 100,000 | 1/(1.13)^8=>0.37616 | (100,000*0.37616)=>37,616 |
9 | 42,000 | 1/(1.13)^9=>0.33288 | (42,000*0.33288)=>13,980.96 |
10 | 25,000 | 1/(1.13)^10=>0.29459 | (25,000*0.29459)=>7,364.75 |
NPV= -$147,909.45 |
SInce NPV is negative the project cannot be accepted.