Question

In: Advanced Math

1: (an) and (bn) are bounded sequences: (a) prove that limsup(-an) = -liminf(an) (b) for any...

1: (an) and (bn) are bounded sequences:

(a) prove that limsup(-an) = -liminf(an)

(b) for any c>0, prove that

limsup(can) = climsup(an)

and

liminf(can) = climinf(an)

(c) prove that

limsup(an+bn) ≤ (limsup(an)) + (limsup(bn))

and

liminf(an+bn) ≥ (liminf(an)) + (liminf(bn))

(d) If an and bn are made of nonnegative terms, prove that

limsup(anbn) ≤ (limsup(an)) x (limsup(bn))

and

liminf(anbn) ≥ (liminnf(an)) x (liminf(bn))

(e) prove that

limsup(an+1) = limsup(an)

and

liminf(an+1) = liminf(an)

Solutions

Expert Solution


Related Solutions

Let {an} and {bn} be bounded sequences. Prove that limit superior {an+bn} ≦ limit superior {an}...
Let {an} and {bn} be bounded sequences. Prove that limit superior {an+bn} ≦ limit superior {an} + limit superior{bn}
For any two real sequences {an} and {bn}, prove that Rudin’s Ex. 5 We assume that...
For any two real sequences {an} and {bn}, prove that Rudin’s Ex. 5 We assume that the right hand side is defined, that is, not of the form ∞ − ∞ or −∞ + ∞. lim sup (an + bn) ≤ lim sup an + lim sup bn. Proof If lim sup an = ∞ or lim sup bn = ∞, there is nothing to prove
1.Prove the following statements: . (a) If bn is recursively defined by bn =bn−1+3 for all...
1.Prove the following statements: . (a) If bn is recursively defined by bn =bn−1+3 for all integers n≥1 and b0 =2, then bn =3n+2 for all n≥0. .(b) If cn is recursively defined by cn =3cn−1+1 for all integers n≥1 and c0 =0, then cn =(3n −1)/2 for all n≥0. .(c) If dn is recursively defined by d0 = 1, d1 = 4 and dn = 4dn−1 −4dn−2 for all integers n ≥ 2, then dn =(n+1)2n for all n≥0.
Prove that if f is a bounded function on a bounded interval [a,b] and f is...
Prove that if f is a bounded function on a bounded interval [a,b] and f is continuous except at finitely many points in [a,b], then f is integrable on [a,b]. Hint: Use interval additivity, and an induction argument on the number of discontinuities.
1. Prove that if a set A is bounded, then A-bar is also bounded. 2. Prove...
1. Prove that if a set A is bounded, then A-bar is also bounded. 2. Prove that if A is a bounded set, then A-bar is compact.
1. Prove that any compact subset ot a metric space is closed and bounded. 2. Prove...
1. Prove that any compact subset ot a metric space is closed and bounded. 2. Prove that a closed subset of a compact set is a compact set.
Let (xn), (yn) be bounded sequences. a) Prove that lim inf xn + lim inf yn...
Let (xn), (yn) be bounded sequences. a) Prove that lim inf xn + lim inf yn ≤ lim inf(xn + yn) ≤ lim sup(xn + yn) ≤ lim sup xn + lim sup yn. Give example where all inequalities are strict. b)Let (zn) be the sequence defined recursively by z1 = z2 = 1, zn+2 = √ zn+1 + √ zn, n = 1, 2, . . . . Prove that (zn) is convergent and find its limit. Hint; argue...
Sn = (1+(1/n))^n (a) Prove Sn is strictly increasing (b) bounded below by 2 and above...
Sn = (1+(1/n))^n (a) Prove Sn is strictly increasing (b) bounded below by 2 and above by 3 (c) Sn converges to e (d) Obtain an expression for e (e) Prove e is irrational
Consider any two finite sets A and B. Prove that |A×B|=|A||B|
Consider any two finite sets A and B. Prove that |A×B|=|A||B|
1. prove that if{xn} is decreasing an bounded from below, then {xn} is convergent.
1. prove that if{xn} is decreasing an bounded from below, then {xn} is convergent.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT