Question

In: Advanced Math

Use the method of reduction of order to find a second solution y2 of the given...

Use the method of reduction of order to find a second solution y2 of the given differential equation such that {y1, y2} is a fundamental set of solutions on the given interval.

t2y′′ +2ty′ −2y=0, t > 0, y1(t)=t

(a) Verify that the two solutions that you have obtained are linearly independent.

(b) Let y(1) = y0, y′(1) = v0. Solve the initial value problem. What is the longest interval on which the initial value problem is certain to have a unique twice differentiable solution?

(c) Now suppose that y(0) = y0, y′(0) = v0. Is there a solution in this case (how does it depend on y0 and v0? If so, how many? Explain.

Solutions

Expert Solution


Related Solutions

Use the method of reduction of order to find a second independent solution of the given...
Use the method of reduction of order to find a second independent solution of the given differential equation. t2y'' + 4ty' − 4y = 0,    t > 0;    y1(t) = t
Use ‘Reduction of Order’ to find a second solution y2 to the given ODEs: (a) y′′+2y′+y=0,...
Use ‘Reduction of Order’ to find a second solution y2 to the given ODEs: (a) y′′+2y′+y=0, y1 =xe−x (b) y′′+9y=0, y1 =sin3x (c) x2y′′+2xy′−6y=0, y1 =x2 (d) xy′′ +y′ =0, y1 =lnx
Assuming that x>0, use the method of reduction of order to find a second solution to...
Assuming that x>0, use the method of reduction of order to find a second solution to x^2y''−3xy'+4y=0 Given y1(x)=x^2
Problem 3: Find a second solution by reduction of order - nonhomogeneous The given function y1(x)...
Problem 3: Find a second solution by reduction of order - nonhomogeneous The given function y1(x) is a solution of the associated homogeneous equation. Use the reduction of order method to find a solution y(x) = u(x)y1(x) of the nonhomogeneous equation. 1. x^2y'' + xy'−4y = x^3, y1 = x^2 2. 2x^2*y'' + 3xy'−y = 1/x ,    y1 = x^(1/2)
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order to find y2(x) x2y'' − xy' + 17y = 0 ;   y1=xsin(4In(x))
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx (5) as instructed, to find a second solution y2(x). x2y'' − xy' + 26y = 0; y1 = x sin(5 ln(x)).......................................
a) Verify that y1 and y2 are fundamental solutions of the given homogenous second-order linear differential...
a) Verify that y1 and y2 are fundamental solutions of the given homogenous second-order linear differential equation b) find the general solution for the given differential equation c) find a particular solution that satisfies the specified initial conditions for the given differential equation y'' - y = 0 y1 = e^x, y2 = e^-x : y(0) = 0, y'(0) = 5
Find the general solution of the given second-order differential equation. 1. 4?'' + 9? = 15...
Find the general solution of the given second-order differential equation. 1. 4?'' + 9? = 15 2. (1/4) ?'' + ?' + ? = ?2 − 3x Solve the differential equation by variation of parameters. 3. ?'' + ? = sin(x)
1)Find the general solution of the given second-order differential equation. y'' − 7y' + 6y =...
1)Find the general solution of the given second-order differential equation. y'' − 7y' + 6y = 0 2)Solve the given differential equation by undetermined coefficients. y'' + 4y = 6 sin(2x)
Use the method of variation of parameters to find a particular solution of the given differential...
Use the method of variation of parameters to find a particular solution of the given differential equation and then find the general solution of the ODE. y'' + y = tan(t)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT