In: Economics
Given the following information graphically illustrate the demand and supply curves and solve for the consumer and producer surplus:
a. Q(d)=200-5P Q(s)=50+5P
b. Q(d)=1000-20P Q(s)=200+5P
c. P=400-0.5Q(d) P=100+0.5Q(s)
d. P=2000-2Q(d) P=200+3Q(s)
(a) Qd= 200-5P
When P=0 , Qd= 200
When Qd=0 , P=40
Qs= 50+ 5P
When Qs=0, P= -10
When P=0, Qs= 50
Equilibrium is where Qd=Qs , we get:
200-5P= 50+5P
10P= 150
P= 15 (Equilibrium price)
Q= 50+5(15) = 125 (Equilibrium quantity)
Consumer surplus = (0.5)(40-15)(125) = $ 1562.5
Producer surplus = (0.5)(15-(-10))(125)= $1562.5
(b)
Qd= 1000-20P
When P=0 , Qd= 1000
When Qd=0 , P=50
Qs= 200+ 5P
When Qs=0, P= -40
When P=0, Qs= 200
Equilibrium is where Qd=Qs , we get:
1000-20P = 200+ 5P
25P= 800
P= 32 (Equilibrium price)
Q = 200+ 5(32)= 360 (Equilibrium quantity)
Consumer surplus = (0.5)(50-32)(360)= $3240
Producers surplus = (0.5)(32-(-40))(360)= $12960
(c) P= 400- 0.5Qd
When Qd=0 , P= 400
When P= 0 , Qd= 800
P= 100+ 0.5Qs
When Qs=0 , P=100
When P=0 , Qs= -200
At equilibrium Qd=Qs , we get :
400- 0.5Q = 100+ 0.5Q
Q = 300 (Equilibrium quantity )
P= 400- 0.5(300) = $250 (Equilibrium price )
Consumer surplus = (0.5)(400-250)(300)= $22500
Producer surplus = (0.5)(250-100)(300) = $22500
(d)
P= 2000- 2Qd
When Qd=0 , P= 2000
When P= 0 , Qd= 1000
P= 200+ 3Qs
When Qs=0 , P=200
When P=0 , Qs= -66.67
At equilibrium Qd=Qs , we get :
2000-2Q = 200+ 3Q
5Q = 1800
Q = 360 (Equilibrium quantity )
P= 2000- 2(360)=$1280 (Equilibrium price)
Consumer surplus = (0.5)(2000- 1280)(360)= $129600
Producer surplus = (0.5)(1280-200)(360)= $194400