Question

In: Computer Science

Convert the following 32-bit IEEE floating point numbers to decimal: 0100 1100 1110 0110 1111 1000...

Convert the following 32-bit IEEE floating point numbers to decimal:

0100 1100 1110 0110 1111 1000 0000 0000
1011 0101 1110 0110 1010 0110 0000 0000

Determine whether or not the following pairs are equivalent by constructing truth tables:

[(wx'+y')(w'y+z)] and [(wx'z+y'z)]
[(wz'+xy)] and [(wxz'+xy+x'z')]

Using DeMorgan’s Law and Boolean algebra, convert the following expressions into simplest form:

(a'd)'
(w+y')'
((bd)(a + c'))'
((wy'+z)+(xz)')'

Draw the circuit that implements each of the following equations:

AB'+(C'+AD')+D
XY'+WZ+Y'
(AD'+BC+C'D)'
((W'X)'+(Y'+Z))'

Solutions

Expert Solution

1)
a)
0 10011001 11001101111100000000000
sign bit is 0(+ve)
exp bits are 10011001
   => 10011001
   => 1x2^7+0x2^6+0x2^5+1x2^4+1x2^3+0x2^2+0x2^1+1x2^0
   => 1x128+0x64+0x32+1x16+1x8+0x4+0x2+1x1
   => 128+0+0+16+8+0+0+1
   => 153
in decimal it is 153
so, exponent/bias is 153-127 = 26
frac bits are 110011011111

IEEE-754 Decimal value is 1.frac * 2^exponent
IEEE-754 Decimal value is 1.110011011111 * 2^26
1.110011011111 in decimal is 1.804443359375
   => 1.110011011111
   => 1x2^0+1x2^-1+1x2^-2+0x2^-3+0x2^-4+1x2^-5+1x2^-6+0x2^-7+1x2^-8+1x2^-9+1x2^-10+1x2^-11+1x2^-12
   => 1x1+1x0.5+1x0.25+0x0.125+0x0.0625+1x0.03125+1x0.015625+0x0.0078125+1x0.00390625+1x0.001953125+1x0.0009765625+1x0.00048828125+1x0.000244140625
   => 1+0.5+0.25+0.0+0.0+0.03125+0.015625+0.0+0.00390625+0.001953125+0.0009765625+0.00048828125+0.000244140625
   => 1.804443359375
so, 1.804443359375 * 2^26 in decimal is 121094144.0
so, 01001100111001101111100000000000 in IEEE-754 single precision format is 121094144.0
Answer: 121094144.0

b)
1 01101011 11001101010011000000000
sign bit is 1(-ve)
exp bits are 01101011
   => 01101011
   => 0x2^7+1x2^6+1x2^5+0x2^4+1x2^3+0x2^2+1x2^1+1x2^0
   => 0x128+1x64+1x32+0x16+1x8+0x4+1x2+1x1
   => 0+64+32+0+8+0+2+1
   => 107
in decimal it is 107
so, exponent/bias is 107-127 = -20
frac bits are 11001101010011

IEEE-754 Decimal value is 1.frac * 2^exponent
IEEE-754 Decimal value is 1.11001101010011 * 2^-20
1.11001101010011 in decimal is 1.80194091796875
   => 1.11001101010011
   => 1x2^0+1x2^-1+1x2^-2+0x2^-3+0x2^-4+1x2^-5+1x2^-6+0x2^-7+1x2^-8+0x2^-9+1x2^-10+0x2^-11+0x2^-12+1x2^-13+1x2^-14
   => 1x1+1x0.5+1x0.25+0x0.125+0x0.0625+1x0.03125+1x0.015625+0x0.0078125+1x0.00390625+0x0.001953125+1x0.0009765625+0x0.00048828125+0x0.000244140625+1x0.0001220703125+1x6.103515625e-05
   => 1+0.5+0.25+0.0+0.0+0.03125+0.015625+0.0+0.00390625+0.0+0.0009765625+0.0+0.0+0.0001220703125+6.103515625e-05
   => 1.80194091796875
so, 1.80194091796875 * 2^-20 in decimal is 1.7184647731482983e-06
so, 10110101111001101010011000000000 in IEEE-754 single precision format is -1.7184647731482983e-06
Answer: -1.7184647731482983e-06


Related Solutions

Convert the following decimal numbers to 32-bit IEEE floating point: 86.59375 -1.59729 Convert the following 32-bit...
Convert the following decimal numbers to 32-bit IEEE floating point: 86.59375 -1.59729 Convert the following 32-bit IEEE floating point numbers to decimal: 0100 1100 1110 0110 1111 1000 0000 0000 1011 0101 1110 0110 1010 0110 0000 0000
Convert the following binary number (signed 32-bit floating point IEEE-754) into decimal. 0100 0011 0100 0000...
Convert the following binary number (signed 32-bit floating point IEEE-754) into decimal. 0100 0011 0100 0000 0000 0000 0000 0000
Convert the following binary floating point  to decimal IEEE 32-bit floating point format.   0 1000 0101 000...
Convert the following binary floating point  to decimal IEEE 32-bit floating point format.   0 1000 0101 000 0100 1101 0000 0000 0000
Convert the following decimal numbers into their 32-bit floating point representation (IEEE single precision). You may...
Convert the following decimal numbers into their 32-bit floating point representation (IEEE single precision). You may use a calculator to do the required multiplications, but you must show your work, not just the solution. 1. -59.75 (ANSW: 11000010011011110000000000000000) 2. 0.3 (ANSW: 00111110100110011001100110011010 (rounded) 00111110100110011001100110011001 (truncated; either answer is fine)) Please show all work
Concert the following 32-bit floating point number (IEEE single precision) into their decimal representation. 1100 0101...
Concert the following 32-bit floating point number (IEEE single precision) into their decimal representation. 1100 0101 0001 1111 1000 0000 0000 0000 (ANSW: -2552.0) Please show all work
Convert 1.67e14 to the 32-bit IEEE 754 Floating Point Standard, with the following layout: first bit...
Convert 1.67e14 to the 32-bit IEEE 754 Floating Point Standard, with the following layout: first bit is sign bit, next 8 bits is exponent field, and remaining 23 bits is mantissa field; result is to be in hexadecimal and not to be rounded up. answer choices 5717E27B 57172EB7 5717E2B7 C717E2B7 5771E2B7
3. IEEE Floating Point Representation What decimal number does the 32-bit IEEE floating point number 0xC27F0000...
3. IEEE Floating Point Representation What decimal number does the 32-bit IEEE floating point number 0xC27F0000 represent? Fill in the requested information in the blanks below. What is the sign of the number (say positive or negative): What is the exponent in decimal format: What is the significand in binary: What is the value of the stored decimal number in decimal (final answer): Credit will be given for your final answer in the blanks and the work shown below.
Consider the following 32-bit floating point representation based on the IEEE floating point standard: There is...
Consider the following 32-bit floating point representation based on the IEEE floating point standard: There is a sign bit in the most significant bit. The next eight bits are the exponent, and the exponent bias is 28-1-1 = 127. The last 23 bits are the fraction bits. The representation encodes number of the form V = (-1)S x M x 2E, where S is the sign, M is the significand, and E is the biased exponent. The rules for the...
3) Convert 1.25 decimal to 32 bit floating point format. 4) Convert the following truth table...
3) Convert 1.25 decimal to 32 bit floating point format. 4) Convert the following truth table to a digital circuit consisting of NOT, AND, and OR gates. ABC Out 000 1 001 1 010 0 011 0 100 1 101 0 110 1 111 0 5) Construct a tri-state buffer using transistors 10) What are the advantages of a large page size?
Q1.Convert C46C000016 into a 32-bit single-precision IEEE floating-point binary number.
Q1.Convert C46C000016 into a 32-bit single-precision IEEE floating-point binary number.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT