In: Math
Independent random samples of professional football and basketball players gave the following information.
Heights (in ft) of pro football players: x1; n1 = 45
6.33 | 6.52 | 6.50 | 6.25 | 6.50 | 6.33 | 6.25 | 6.17 | 6.42 | 6.33 |
6.42 | 6.58 | 6.08 | 6.58 | 6.50 | 6.42 | 6.25 | 6.67 | 5.91 | 6.00 |
5.83 | 6.00 | 5.83 | 5.08 | 6.75 | 5.83 | 6.17 | 5.75 | 6.00 | 5.75 |
6.50 | 5.83 | 5.91 | 5.67 | 6.00 | 6.08 | 6.17 | 6.58 | 6.50 | 6.25 |
6.33 | 5.25 | 6.66 | 6.50 | 5.82 |
Heights (in ft) of pro basketball players: x2; n2 = 40
6.08 | 6.56 | 6.25 | 6.58 | 6.25 | 5.92 | 7.00 | 6.41 | 6.75 | 6.25 |
6.00 | 6.92 | 6.85 | 6.58 | 6.41 | 6.67 | 6.67 | 5.75 | 6.25 | 6.25 |
6.50 | 6.00 | 6.92 | 6.25 | 6.42 | 6.58 | 6.58 | 6.08 | 6.75 | 6.50 |
6.83 | 6.08 | 6.92 | 6.00 | 6.33 | 6.50 | 6.58 | 6.83 | 6.50 | 6.58 |
(a) Use a calculator with mean and standard deviation keys to calculate x1, s1, x2, and s2. (Round your answers to three decimal places.)
x1 = | |
s1 = | |
x2 = | |
s2 = |
(b) Let μ1 be the population mean for
x1 and let μ2 be the
population mean for x2. Find a 90% confidence
interval for μ1 – μ2.
(Round your answers to three decimal places.)
lower limit | |
upper limit |
football ( X ) | Σ ( Xi- X̅ )2 | basketball ( Y ) | Σ ( Yi- Y̅ )2 | |
6.33 | 0.0228 | 6.08 | 0.1394 | |
6.52 | 0.1163 | 6.56 | 0.0114 | |
6.5 | 0.1031 | 6.25 | 0.0413 | |
6.25 | 0.0051 | 6.58 | 0.0161 | |
6.5 | 0.1031 | 6.25 | 0.0413 | |
6.33 | 0.0228 | 5.92 | 0.2844 | |
6.25 | 0.0051 | 7 | 0.2989 | |
6.17 | 0.0001 | 6.41 | 0.0019 | |
6.42 | 0.0581 | 6.75 | 0.088 | |
6.33 | 0.0228 | 6.25 | 0.0413 | |
6.42 | 0.0581 | 6 | 0.2055 | |
6.58 | 0.1609 | 6.92 | 0.2178 | |
6.08 | 0.0098 | 6.85 | 0.1574 | |
6.58 | 0.1609 | 6.58 | 0.0161 | |
6.5 | 0.1031 | 6.41 | 0.0019 | |
6.42 | 0.0581 | 6.67 | 0.05 | |
6.25 | 0.0051 | 6.67 | 0.047 | |
6.67 | 0.2412 | 5.75 | 0.4946 | |
5.91 | 0.0723 | 6.25 | 0.0413 | |
6 | 0.032 | 6.25 | 0.0413 | |
5.83 | 0.1217 | 6.5 | 0.0022 | |
6 | 0.032 | 6 | 0.2055 | |
5.83 | 0.1217 | 6.92 | 0.2178 | |
5.08 | 1.2076 | 6.25 | 0.0413 | |
6.75 | 0.3262 | 6.42 | 0.0011 | |
5.83 | 0.1217 | 6.58 | 0.0161 | |
6.17 | 0.0001 | 6.58 | 0.0161 | |
5.75 | 0.184 | 6.08 | 0.1394 | |
6 | 0.032 | 6.75 | 0.088 | |
5.75 | 0.184 | 6.5 | 0.0022 | |
6.5 | 0.1031 | 6.83 | 0.1419 | |
5.83 | 0.1217 | 6.08 | 0.1394 | |
5.91 | 0.0723 | 6.92 | 0.2178 | |
5.67 | 0.259 | 6 | 0.2055 | |
6 | 0.032 | 6.33 | 0.0152 | |
6.08 | 0.0098 | 6.5 | 0.0022 | |
6.17 | 0.0001 | 6.58 | 0.0161 | |
6.58 | 0.1609 | 6.83 | 0.1419 | |
6.5 | 0.1031 | 6.5 | 0.0022 | |
6.25 | 0.0051 | 6.58 | 0.0161 | |
6.33 | 0.0228 | |||
5.25 | 0.8629 | |||
6.66 | 0.2315 | |||
6.5 | 0.1031 | |||
5.82 | 0.1288 | |||
Total | 278.05 | 5.908 | 258.13 | 3.8619 |
part a)
Mean X̅ = Σ Xi / n
X̅ = 278.05 / 45 = 6.179
Sample Standard deviation SX = √ ( (Xi - X̅
)2 / n - 1 )
SX = √ ( 5.9074 / 45 -1 ) = 0.366
Mean Y̅ = ΣYi / n
Y̅ = 258.13 / 40 = 6.453
Sample Standard deviation SY = √ ( (Yi - Y̅
)2 / n - 1 )
SY = √ ( 3.8609 / 40 -1) = 0.315
X1 = 6.179
S1 = 0.366
X2 = 6.453
S2 = 0.315
Confidence interval :-
t(α/2, DF) = t(0.1 /2, 82 ) = 1.664
DF = 82
Lower Limit =
Lower Limit = -0.397
Upper Limit =
Upper Limit = -0.151
90% Confidence interval is ( -0.397 , -0.151
)