In: Statistics and Probability
Independent random samples of professional football and basketball players gave the following information. Assume that the weight distributions are mound-shaped and symmetric.
Weights (in lb) of pro football players: x1; n1 = 21
245 | 261 | 255 | 251 | 244 | 276 | 240 | 265 | 257 | 252 | 282 |
256 | 250 | 264 | 270 | 275 | 245 | 275 | 253 | 265 | 272 |
Weights (in lb) of pro basketball players: x2; n2 = 19
203 | 200 | 220 | 210 | 192 | 215 | 222 | 216 | 228 | 207 |
225 | 208 | 195 | 191 | 207 | 196 | 183 | 193 | 201 |
(a) Use a calculator with mean and standard deviation keys to calculate x1, s1, x2, and s2. (Round your answers to one decimal place.)
x1 = | |
s1 = | |
x2 = | |
s2 = |
(b) Let μ1 be the population mean for
x1 and let μ2 be the
population mean for x2. Find a 99% confidence
interval for μ1 − μ2.
(Round your answers to one decimal place.)
lower limit | |
upper limit |
(c) Examine the confidence interval and explain what it means in
the context of this problem. Does the interval consist of numbers
that are all positive? all negative? of different signs? At the 99%
level of confidence, do professional football players tend to have
a higher population mean weight than professional basketball
players?
Because the interval contains only negative numbers, we can say that professional football players have a lower mean weight than professional basketball players.Because the interval contains both positive and negative numbers, we cannot say that professional football players have a higher mean weight than professional basketball players. Because the interval contains only positive numbers, we can say that professional football players have a higher mean weight than professional basketball players.
(d) Which distribution did you use? Why?
The Student's t-distribution was used because σ1 and σ2 are known.The standard normal distribution was used because σ1 and σ2 are unknown. The Student's t-distribution was used because σ1 and σ2 are unknown.The standard normal distribution was used because σ1 and σ2 are known.
(a) From the given sample data :
(b)
The 99% confidence interval for μ1 − μ2 ,
;
lower limit=43.7
upper limit=63.9
(c) Hypothesis : Vs
Here , the value does not lies in the confidence interval
Therefore , reject the null hypothesis.
Hence , At the 99% level of confidence, the professional football players tend to have a higher population mean weight than professional basketball players.
Because the interval contains only positive numbers
(d) The standard normal distribution was used because σ1 and σ2 are unknown.
Therefore , use the estimates of and