Question

In: Advanced Math

Let f be a group homomorphism from a group G to a group H If the...

Let f be a group homomorphism from a group G to a group H

If the order of g equals the order of f(g) for every g in G must f be one to one.

Solutions

Expert Solution

be a group homomorphism .

Suppose be two elements . Now ,

  

, where is the identity elemnt of H .

, As f is a homomorphism .

As given order of equals to so order of is equals to order of

Order of = Order of

Now as order of the identity element is always 1 so ,

Order of is 1 .

As only identity can have order 1 so ,

  

So implies .

Hence is one-to-one.

.

.

If you have any doubt or need more clarification at any step please comment.


Related Solutions

Let f: Q8 to D8 be a homomorphism from the quaternion Q8 to the dihedral group...
Let f: Q8 to D8 be a homomorphism from the quaternion Q8 to the dihedral group D8 of order 8. Suppose that f (i) = rs and f( j) = r^2. (a) Find f (k) and f(-k) (expressed in standard form r^i*s^i for suitable i and j) · (b) List the elements in the kernel of f in standard form. (c) The quotient group Q8/ker(f) is isomorphic to which one of the groups C2, C4 or C2xC2    why?
Let f : G → G′ be a surjective homomorphism between two groups, G and G′,...
Let f : G → G′ be a surjective homomorphism between two groups, G and G′, and let N be a normal subgroup of G. Prove that f (N) is a normal subgroup of G′.
Let φ : G1 → G2 be a group homomorphism. (abstract algebra) (a) Suppose H is...
Let φ : G1 → G2 be a group homomorphism. (abstract algebra) (a) Suppose H is a subgroup of G1. Define φ(H) = {φ(h) | h ∈ H}. Prove that φ(H) is a subgroup of G2. (b) Let ker(φ) = {g ∈ G1 | φ(g) = e2}. Prove that ker(φ) is a subgroup of G1. (c) Prove that φ is a group isomorphism if and only if ker(φ) = {e1} and φ(G1) = G2.
Let G be a finite group and H a subgroup of G. Let a be an...
Let G be a finite group and H a subgroup of G. Let a be an element of G and aH = {ah : h is an element of H} be a left coset of H. If b is an element of G as well and the intersection of aH bH is non-empty then aH and bH contain the same number of elements in G. Thus conclude that the number of elements in H, o(H), divides the number of elements...
Let G be a group acting on a set S, and let H be a group...
Let G be a group acting on a set S, and let H be a group acting on a set T. The product group G × H acts on the disjoint union S ∪ T as follows. For all g ∈ G, h ∈ H, s ∈ S and t ∈ T, (g, h) · s = g · s, (g, h) · t = h · t. (a) Consider the groups G = C4, H = C5, each acting...
Let G be a group and K ⊂ G be a normal subgroup. Let H ⊂...
Let G be a group and K ⊂ G be a normal subgroup. Let H ⊂ G be a subgroup of G such that K ⊂ H Suppose that H is also a normal subgroup of G. (a) Show that H/K ⊂ G/K is a normal subgroup. (b) Show that G/H is isomorphic to (G/K)/(H/K).
Suppose G is a group and H and H are both subgroups of G. Let HK={hk,...
Suppose G is a group and H and H are both subgroups of G. Let HK={hk, h∈H and k ∈K} a.give a example such that |HK| not equal to |H| |K| b. give a example to show f :HK →H ⨯K given by f(hk) = (h,k) may not be well defined.
Let H and K be subgroups of a group G so that for all h in...
Let H and K be subgroups of a group G so that for all h in H and k in K there is a k' in K with hk = k'h. Proposition 2.3.2 shows that HK is a group. Show that K is a normal subgroup of HK.
Let LaTeX: GG be an abelian group. Let LaTeX: H = { g \in G \mid...
Let LaTeX: GG be an abelian group. Let LaTeX: H = { g \in G \mid g^3 = e }H = { g ∈ G ∣ g 3 = e }. Prove or disprove: LaTeX: H \leq GH ≤ G.
1. Let G be the symmetry group of a square and let H be the subgroup...
1. Let G be the symmetry group of a square and let H be the subgroup generated by a rotation by 180 degrees. Find all left H-cosets.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT