Question

In: Advanced Math

1. Let G be the symmetry group of a square and let H be the subgroup...

1. Let G be the symmetry group of a square and let H be the subgroup generated by a rotation by 180 degrees. Find all left H-cosets.

Solutions

Expert Solution


Related Solutions

Let G be a finite group and H a subgroup of G. Let a be an...
Let G be a finite group and H a subgroup of G. Let a be an element of G and aH = {ah : h is an element of H} be a left coset of H. If b is an element of G as well and the intersection of aH bH is non-empty then aH and bH contain the same number of elements in G. Thus conclude that the number of elements in H, o(H), divides the number of elements...
Let D3 be the symmetry group of an equilateral triangle. Show that the subgroup H ⊂...
Let D3 be the symmetry group of an equilateral triangle. Show that the subgroup H ⊂ D3 consisting of those symmetries which are rotations is a normal subgroup.
Let G be a group and K ⊂ G be a normal subgroup. Let H ⊂...
Let G be a group and K ⊂ G be a normal subgroup. Let H ⊂ G be a subgroup of G such that K ⊂ H Suppose that H is also a normal subgroup of G. (a) Show that H/K ⊂ G/K is a normal subgroup. (b) Show that G/H is isomorphic to (G/K)/(H/K).
4.- Show the solution: a.- Let G be a group, H a subgroup of G and...
4.- Show the solution: a.- Let G be a group, H a subgroup of G and a∈G. Prove that the coset aH has the same number of elements as H. b.- Prove that if G is a finite group and a∈G, then |a| divides |G|. Moreover, if |G| is prime then G is cyclic. c.- Prove that every group is isomorphic to a group of permutations. SUBJECT: Abstract Algebra (18,19,20)
1. Let N be a normal subgroup of G and let H be any subgroup of...
1. Let N be a normal subgroup of G and let H be any subgroup of G. Let HN = {hn|h ∈ H,n ∈ N}. Show that HN is a subgroup of G, and is the smallest subgroup containing both N and H.
G is a group and H is a normal subgroup of G. List the elements of...
G is a group and H is a normal subgroup of G. List the elements of G/H and then write the table of G/H. 1. G=Z10, H= {0,5}. (Explain why G/H is congruent to Z5) 2. G=S4 and H= {e, (12)(34), (13)(24), (14)(23)
Prove that a subgroup H of a group G is normal if and only if gHg−1...
Prove that a subgroup H of a group G is normal if and only if gHg−1 =H for all g∈G
Let G be a group and let N ≤ G be a normal subgroup. (i) Define...
Let G be a group and let N ≤ G be a normal subgroup. (i) Define the factor group G/N and show that G/N is a group. (ii) Let G = S4, N = K4 = h(1, 2)(3, 4),(1, 3)(2, 4)i ≤ S4. Show that N is a normal subgroup of G and write out the set of cosets G/N.
Let (G,+) be an abelian group and U a subgroup of G. Prove that G is...
Let (G,+) be an abelian group and U a subgroup of G. Prove that G is the direct product of U and V (where V a subgroup of G) if only if there is a homomorphism f : G → U with    f|U = IdU
Given a group G with a subgroup H, define a binary relation on G by a...
Given a group G with a subgroup H, define a binary relation on G by a ∼ b if and only if ba^(-1)∈ H. (a) (5 points) Prove that ∼ is an equivalence relation. (b) (5 points) For each a ∈ G denote by [a] the equivalence class of a and prove that [a] = Ha = {ha | h ∈ H}. A set of the form Ha, for some a ∈ G, is called a right coset of H...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT