In: Statistics and Probability
This exercise must be completed on the four subscales below, and you should, therefore, produce four reliability analyses.
For Subscale 1 (Fear of statistics):
Distribution Analysis: Subscale 1
Variable: Subscale 1
Censoring
Censoring Information | Count |
Uncensored value | 8 |
Estimation Method: Maximum Likelihood
Distribution: Weibull
Parameter Estimates
Standard Error |
95.0% Normal CI | |||
Parameter | Estimate | Lower | Upper | |
Shape | 1.27001 | 0.372059 | 0.715218 | 2.25514 |
Scale | 11.0216 | 3.22897 | 6.20681 | 19.5712 |
Log-Likelihood = -26.314
Goodness-of-Fit
Anderson-Darling (Adjusted) |
1.847 |
Characteristics of Distribution
Standard Error |
95.0% Normal CI | |||
Estimate | Lower | Upper | ||
Mean(MTTF) | 10.2291 | 2.86170 | 5.91160 | 17.6999 |
Standard Deviation | 8.11159 | 3.03114 | 3.89968 | 16.8727 |
Median | 8.25866 | 2.71924 | 4.33155 | 15.7462 |
First Quartile(Q1) | 4.13230 | 1.94215 | 1.64488 | 10.3812 |
Third Quartile(Q3) | 14.2541 | 3.97465 | 8.25256 | 24.6202 |
Interquartile Range(IQR) | 10.1218 | 3.11921 | 5.53280 | 18.5170 |
Table of Percentiles
Standard Error |
95.0% Normal CI | |||
Percent | Percentile | Lower | Upper | |
1 | 0.294553 | 0.349211 | 0.0288411 | 3.00827 |
2 | 0.510418 | 0.525577 | 0.0678333 | 3.84068 |
3 | 0.705222 | 0.662110 | 0.111985 | 4.44111 |
4 | 0.888104 | 0.776723 | 0.159961 | 4.93074 |
5 | 1.06303 | 0.876815 | 0.211084 | 5.35350 |
6 | 1.23222 | 0.966343 | 0.264940 | 5.73094 |
7 | 1.39704 | 1.04773 | 0.321247 | 6.07544 |
8 | 1.55846 | 1.12258 | 0.379806 | 6.39485 |
9 | 1.71717 | 1.19206 | 0.440464 | 6.69449 |
10 | 1.87371 | 1.25700 | 0.503107 | 6.97819 |
20 | 3.38314 | 1.75371 | 1.22485 | 9.34451 |
30 | 4.89444 | 2.10970 | 2.10282 | 11.3921 |
40 | 6.49438 | 2.41365 | 3.13463 | 13.4552 |
50 | 8.25866 | 2.71924 | 4.33155 | 15.7462 |
60 | 10.2884 | 3.08512 | 5.71615 | 18.5179 |
70 | 12.7562 | 3.60455 | 7.33153 | 22.1946 |
80 | 16.0316 | 4.47285 | 9.27880 | 27.6990 |
90 | 21.2545 | 6.29522 | 11.8943 | 37.9806 |
91 | 22.0166 | 6.60198 | 12.2323 | 39.6274 |
92 | 22.8603 | 6.95248 | 12.5952 | 41.4913 |
93 | 23.8067 | 7.35878 | 12.9894 | 43.6325 |
94 | 24.8868 | 7.83865 | 13.4234 | 46.1396 |
95 | 26.1481 | 8.41976 | 13.9108 | 49.1507 |
96 | 27.6700 | 9.14884 | 14.4732 | 52.8994 |
97 | 29.5993 | 10.1141 | 15.1505 | 57.8279 |
98 | 32.2626 | 11.5154 | 16.0280 | 64.9408 |
99 | 36.6844 | 13.9991 | 17.3642 | 77.5011 |
Probability Plot for Subscale 1
The plot is:
For Subscale 2 (Peer evaluation):
Distribution Analysis: Subscale 2
Variable: Subscale 2
Censoring
Censoring Information | Count |
Uncensored value | 5 |
Estimation Method: Maximum Likelihood
Distribution: Weibull
Parameter Estimates
Standard Error |
95.0% Normal CI | |||
Parameter | Estimate | Lower | Upper | |
Shape | 1.71706 | 0.688381 | 0.782589 | 3.76737 |
Scale | 16.6180 | 4.49877 | 9.77564 | 28.2497 |
Log-Likelihood = -17.777
Goodness-of-Fit
Anderson-Darling (Adjusted) |
2.757 |
Characteristics of Distribution
Standard Error |
95.0% Normal CI | |||
Estimate | Lower | Upper | ||
Mean(MTTF) | 14.8175 | 3.92415 | 8.81760 | 24.9001 |
Standard Deviation | 8.89061 | 3.64348 | 3.98198 | 19.8502 |
Median | 13.4239 | 4.09917 | 7.37821 | 24.4233 |
First Quartile(Q1) | 8.04369 | 3.60503 | 3.34167 | 19.3619 |
Third Quartile(Q3) | 20.0999 | 5.23531 | 12.0639 | 33.4890 |
Interquartile Range(IQR) | 12.0562 | 4.33083 | 5.96272 | 24.3770 |
Table of Percentiles
Standard Error |
95.0% Normal CI | |||
Percent | Percentile | Lower | Upper | |
1 | 1.14043 | 1.34237 | 0.113538 | 11.4550 |
2 | 1.71264 | 1.74472 | 0.232552 | 12.6129 |
3 | 2.17526 | 2.01512 | 0.353977 | 13.3675 |
4 | 2.57975 | 2.22112 | 0.477209 | 13.9459 |
5 | 2.94667 | 2.38776 | 0.601977 | 14.4239 |
6 | 3.28679 | 2.52749 | 0.728130 | 14.8366 |
7 | 3.60660 | 2.64749 | 0.855574 | 15.2033 |
8 | 3.91040 | 2.75233 | 0.984247 | 15.5360 |
9 | 4.20120 | 2.84512 | 1.11411 | 15.8424 |
10 | 4.48122 | 2.92809 | 1.24512 | 16.1281 |
20 | 6.93747 | 3.45241 | 2.61580 | 18.3992 |
30 | 9.11648 | 3.72296 | 4.09464 | 20.2973 |
40 | 11.2378 | 3.90981 | 5.68242 | 22.2243 |
50 | 13.4239 | 4.09917 | 7.37821 | 24.4233 |
60 | 15.7931 | 4.37439 | 9.17702 | 27.1790 |
70 | 18.5153 | 4.85529 | 11.0743 | 30.9558 |
80 | 21.9252 | 5.76868 | 13.0914 | 36.7199 |
90 | 27.0104 | 7.75587 | 15.3855 | 47.4185 |
91 | 27.7234 | 8.08683 | 15.6514 | 49.1065 |
92 | 28.5053 | 8.46277 | 15.9300 | 51.0075 |
93 | 29.3735 | 8.89552 | 16.2247 | 53.1784 |
94 | 30.3535 | 9.40234 | 16.5401 | 55.7029 |
95 | 31.4840 | 10.0099 | 16.8835 | 58.7108 |
96 | 32.8293 | 10.7629 | 17.2663 | 62.4200 |
97 | 34.5074 | 11.7448 | 17.7093 | 67.2393 |
98 | 36.7780 | 13.1421 | 18.2567 | 74.0889 |
99 | 40.4434 | 15.5471 | 19.0385 | 85.9137 |
Probability Plot for Subscale 2
The plot is:
For Subscale 3 (Fear of computers):
Distribution Analysis: Subscale 3
Variable: Subscale 3
Censoring
Censoring Information | Count |
Uncensored value | 7 |
Estimation Method: Maximum Likelihood
Distribution: Weibull
Parameter Estimates
Standard Error |
95.0% Normal CI | |||
Parameter | Estimate | Lower | Upper | |
Shape | 3.34627 | 1.03486 | 1.82524 | 6.13482 |
Scale | 13.2622 | 1.57679 | 10.5054 | 16.7424 |
Log-Likelihood = -19.576
Goodness-of-Fit
Anderson-Darling (Adjusted) |
1.916 |
Characteristics of Distribution
Standard Error |
95.0% Normal CI | |||
Estimate | Lower | Upper | ||
Mean(MTTF) | 11.9048 | 1.48470 | 9.32316 | 15.2012 |
Standard Deviation | 3.92268 | 0.987858 | 2.39454 | 6.42603 |
Median | 11.8863 | 1.58573 | 9.15145 | 15.4385 |
First Quartile(Q1) | 9.13936 | 1.73267 | 6.30293 | 13.2523 |
Third Quartile(Q3) | 14.6220 | 1.65468 | 11.7134 | 18.2529 |
Interquartile Range(IQR) | 5.48264 | 1.43116 | 3.28698 | 9.14499 |
Table of Percentiles
Standard Error |
95.0% Normal CI | |||
Percent | Percentile | Lower | Upper | |
1 | 3.35417 | 1.59611 | 1.31988 | 8.52387 |
2 | 4.13240 | 1.70858 | 1.83766 | 9.29264 |
3 | 4.67184 | 1.76175 | 2.23100 | 9.78310 |
4 | 5.09910 | 1.79168 | 2.56097 | 10.1527 |
5 | 5.45919 | 1.80950 | 2.85095 | 10.4536 |
6 | 5.77393 | 1.82004 | 3.11284 | 10.7099 |
7 | 6.05570 | 1.82584 | 3.35367 | 10.9347 |
8 | 6.31229 | 1.82834 | 3.57798 | 11.1362 |
9 | 6.54895 | 1.82848 | 3.78892 | 11.3195 |
10 | 6.76942 | 1.82686 | 3.98876 | 11.4885 |
20 | 8.47121 | 1.76971 | 5.62499 | 12.7576 |
30 | 9.74576 | 1.69606 | 6.92916 | 13.7073 |
40 | 10.8501 | 1.63107 | 8.08121 | 14.5678 |
50 | 11.8863 | 1.58573 | 9.15145 | 15.4385 |
60 | 12.9202 | 1.57185 | 10.1792 | 16.3993 |
70 | 14.0187 | 1.60796 | 11.1962 | 17.5526 |
80 | 15.2889 | 1.73009 | 12.2477 | 19.0853 |
90 | 17.0161 | 2.03873 | 13.4547 | 21.5201 |
91 | 17.2451 | 2.09104 | 13.5974 | 21.8715 |
92 | 17.4930 | 2.15038 | 13.7476 | 22.2587 |
93 | 17.7644 | 2.21848 | 13.9075 | 22.6909 |
94 | 18.0661 | 2.29787 | 14.0798 | 23.1809 |
95 | 18.4083 | 2.39239 | 14.2688 | 23.7486 |
96 | 18.8078 | 2.50843 | 14.4814 | 24.4266 |
97 | 19.2951 | 2.65774 | 14.7300 | 25.2751 |
98 | 19.9365 | 2.86624 | 15.0408 | 26.4256 |
99 | 20.9324 | 3.21425 | 15.4923 | 28.2829 |
Probability Plot for Subscale 3
The plot is:
For Subscale 4 (Fear of mathematics):
Distribution Analysis: Subscale 4
Variable: Subscale 4
Censoring
Censoring Information | Count |
Uncensored value | 3 |
Estimation Method: Maximum Likelihood
Distribution: Weibull
Parameter Estimates
Standard Error |
95.0% Normal CI | |||
Parameter | Estimate | Lower | Upper | |
Shape | 3.53609 | 1.60425 | 1.45329 | 8.60388 |
Scale | 13.3731 | 2.31424 | 9.52640 | 18.7730 |
Log-Likelihood = -8.181
Goodness-of-Fit
Anderson-Darling (Adjusted) |
3.658 |
Characteristics of Distribution
Standard Error |
95.0% Normal CI | |||
Estimate | Lower | Upper | ||
Mean(MTTF) | 12.0390 | 2.19736 | 8.41835 | 17.2167 |
Standard Deviation | 3.77481 | 1.37924 | 1.84452 | 7.72516 |
Median | 12.0564 | 2.33631 | 8.24648 | 17.6264 |
First Quartile(Q1) | 9.40183 | 2.55468 | 5.51980 | 16.0141 |
Third Quartile(Q3) | 14.6672 | 2.40546 | 10.6353 | 20.2277 |
Interquartile Range(IQR) | 5.26538 | 2.00882 | 2.49278 | 11.1218 |
Table of Percentiles
Standard Error |
95.0% Normal CI | |||
Percent | Percentile | Lower | Upper | |
1 | 3.64125 | 2.43167 | 0.983577 | 13.4801 |
2 | 4.43612 | 2.57900 | 1.41954 | 13.8631 |
3 | 4.98229 | 2.64566 | 1.75966 | 14.1068 |
4 | 5.41245 | 2.68131 | 2.04980 | 14.2915 |
5 | 5.77349 | 2.70106 | 2.30788 | 14.4432 |
6 | 6.08799 | 2.71139 | 2.54318 | 14.5737 |
7 | 6.36878 | 2.71565 | 2.76124 | 14.6896 |
8 | 6.62386 | 2.71577 | 2.96565 | 14.7946 |
9 | 6.85865 | 2.71296 | 3.15895 | 14.8913 |
10 | 7.07694 | 2.70800 | 3.34297 | 14.9816 |
20 | 8.75007 | 2.61117 | 4.87527 | 15.7045 |
30 | 9.99113 | 2.50003 | 6.11819 | 16.3157 |
40 | 11.0594 | 2.40422 | 7.22249 | 16.9346 |
50 | 12.0564 | 2.33631 | 8.24648 | 17.6264 |
60 | 13.0465 | 2.31035 | 9.22059 | 18.4599 |
70 | 14.0938 | 2.34918 | 10.1660 | 19.5393 |
80 | 15.2995 | 2.49866 | 11.1087 | 21.0714 |
90 | 16.9303 | 2.88930 | 12.1171 | 23.6554 |
91 | 17.1459 | 2.95623 | 12.2292 | 24.0393 |
92 | 17.3790 | 3.03232 | 12.3454 | 24.4650 |
93 | 17.6341 | 3.11983 | 12.4669 | 24.9429 |
94 | 17.9173 | 3.22205 | 12.5952 | 25.4885 |
95 | 18.2383 | 3.34401 | 12.7326 | 26.1249 |
96 | 18.6127 | 3.49405 | 12.8830 | 26.8906 |
97 | 19.0688 | 3.68752 | 13.0532 | 27.8566 |
98 | 19.6681 | 3.95823 | 13.2573 | 29.1788 |
99 | 20.5966 | 4.41101 | 13.5363 | 31.3394 |
Probability Plot for Subscale 4
The plot is: