In: Advanced Math
Using the Riemann Summ Estimate ln(4)
a) n = 3
b) n = 4
c) n = 5
f(x)=1/x
the domain of x is[1,4]
when n=3
=(4-1)/3=1
subintervals are [1,2],[2,3],[3,4]
left end points are 1,2,3
left rectangle approximation=(1+1/2+1/3)x1=11/6
right end points are 2,3,4
right rectangle area =(1/2+1/3+1/4)x1=26/24=13/12
mid ponts are3/2,5/2,7/2
mid rectangle area=(2/3+2/5+2/7)=142/105
when n=4
=(4-1)/4=3/4
subintervals are [1,7/4],[7/4,5/2],[5/2,13/4],[13/4,4]
left end points are 1,7/4,5/2,13/4
left rectangle approximation=(1+4/7+2/5+4/13)x3/4=1.7
right end points are 7/4,5/2,13/4,4
right rectangle area =(4/7+2/5+4/13+1/4)x3/4=3(1/7+1/10+1/13+1/16)
mid ponts are11/8,17/8,23/8,39/8
mid rectangle area=(8/11+8/17+8/23+8/39)x3/4=2(1/11+1/17+1/23+1/39)
when n=5
=(4-1)/5=3/5
subintervals are [1,8/5],[8/5,11/5],[11/5,14/5],[14/5,17/5],[17/5,4]
left end points are 1,8/5,11/5,14/5,17/5
left rectangle approximation=(1+5/8+5/11+5/14+5/17)x3/5=3(1/5+1/8+1/11+1/14+1/17)
right end points are 8/5,11/5,14/5,17/5,4
right rectangle area =(5/8+5/11+5/14+5/17+1/4)x3/5=3(1/8+1/11+1/14+1/17+1/20)
mid ponts are13/10,19/10,25/10,31/10,37/10
mid rectangle area=(10/13+10/19+10/25+10/31+10/37)x3/5=6(1/13+1/19+1/25+1/31+1/37)