Question

In: Math

Let A = (3, 4), B = (0, −5), and C = (4, −3). Find equations...

Let A = (3, 4), B = (0, −5), and C = (4, −3). Find equations for the perpendicular bisectors of segments AB and BC, and coordinates for their common point K. Calculate lengths KA, KB, and KC. Why is K also on the perpendicular bisector of segment CA?

Solutions

Expert Solution


Related Solutions

Let 3x3 matrix A = -3 0 -4                               0 5 0        &nb
Let 3x3 matrix A = -3 0 -4                               0 5 0                              -4 0 3 a) Find the eigenvalues of A and list their multiplicities. b) Find a basis, Bi, for each eigenspace, E(i). c) If possible, diagonalise matrix A. (i.e find matrices P and D such that Pinv AP = D is diagonal).
Find the value of a : b : c : d, if a : b = 2 : 3, b : c = 4 : 5 and c : d = 6 : 7.
Find the value of a : b : c : d, if a : b = 2 : 3, b : c = 4 : 5 and c : d = 6 : 7.
Find the coordinates of the orthocenter of the triangle whose vertices are A(3, 1), B(0, 4) and C(-3, 1).
Find the coordinates of the orthocenter of the triangle whose vertices are A(3, 1), B(0, 4) and C(-3, 1).
let A =[4 -5 2 -3] find eigenvalues of A find eigenvector of A corresponding to...
let A =[4 -5 2 -3] find eigenvalues of A find eigenvector of A corresponding to eigenvlue in part 1 find matrix D and P such A= PDP^-1 compute A^6
Let A, B and C be events. Express for k = 0, 1, 2, 3, the...
Let A, B and C be events. Express for k = 0, 1, 2, 3, the probabilities that: a) Exactly k of events A, B and C occur. b) At least k of events A, B and C occur.
3a) Let ?={????:0≤?≤?}. How many of the following strings are in ?∗? ?,??????,????,???,????,????,?????,???? 3 4 5...
3a) Let ?={????:0≤?≤?}. How many of the following strings are in ?∗? ?,??????,????,???,????,????,?????,???? 3 4 5 6 b) Let ? be any NFA with a single final state. If we convert ? into a right-linear grammar ?, the number of production rules in ? will be equal to number of transitions in ? number of states in ? plus 1 number of states in ? number of transitions in ? plus 1
Let G = Z4 × Z4, H = ⟨([2]4, [3]4)⟩. (a) Find a,b,c,d∈G so that G...
Let G = Z4 × Z4, H = ⟨([2]4, [3]4)⟩. (a) Find a,b,c,d∈G so that G is the disjoint union of the 4 cosets a+H,b+ H, c + H, d + H. List the elements of each coset. (b) Is G/H cyclic?
Find the distances: A) Between ?1=〈2+2?,−1+?,−3?〉and ?2=〈4,−5−3?,1+4?〉 . B) Between the planes 2?−?+5?=0 and 2?−?+5?=5 ....
Find the distances: A) Between ?1=〈2+2?,−1+?,−3?〉and ?2=〈4,−5−3?,1+4?〉 . B) Between the planes 2?−?+5?=0 and 2?−?+5?=5 . C) From the point (1,2,3) to the line ?=〈−?,4−?,1+4?〉 .
Let a, b, c ∈ Q, (a, b) /= (0, 0), and consider the line L...
Let a, b, c ∈ Q, (a, b) /= (0, 0), and consider the line L = {(x, y) ∈ R2 ; ax + by = c}. State and prove a criterion in terms of the data a, b, c ∈ Q to check whether L∩Z2 = ∅, i.e., the line passes through no point with integer coordinates in the plane. Give an explicit example of such a line that is neither parallel to the x-axis nor to the y-axis!
part a . Let A = {1,2,3,4,5},B ={0,3,6} find 1. A∪B 2. A∩B 3. A\B 4....
part a . Let A = {1,2,3,4,5},B ={0,3,6} find 1. A∪B 2. A∩B 3. A\B 4. B \ A Part b . Show that if A andB are sets, (A\B)⊆A 2. A∪(A∩B)=A Part c. Determine whether each of these functions from Z to Z is one-to one 1. f(x)=x−1 2. f(x)=x2 +1 3. f(x) = ⌈x/2⌉ Part c. Let S = {−1,0,2,4,7}, find f(S) if 1. f(x)=1 2. f(x)=2x+1 3. f(x) = ⌊x/5⌋ 4. f(x)=⌈(x2 +1)/3⌉ Part D. Determine whether...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT