Question

In: Advanced Math

Let A ∈ R ^ (nxn) with autovalue λ associated with the vector V_λ ∈ R...

Let A ∈ R ^ (nxn) with autovalue λ associated with the vector V_λ ∈ R ^ (n), determine the shape of the eigenvalues and eigenvectors of

a) 8A + I

b) A^(2) + λA

c) -2A + 5I

d) 2A^(2) + 3λA

Solutions

Expert Solution


Related Solutions

(a) Let Λ = {λ ∈ R : 0 < λ < 1}. For each λ...
(a) Let Λ = {λ ∈ R : 0 < λ < 1}. For each λ ∈ Λ, let Aλ = {x ∈ R : −λ < x < 1/λ}. Find U λ∈Λ Aλ and ~U λ∈Λ Aλ respectively. (b) Let Λ = \ {λ ∈ R : λ > 1}. For each λ ∈ Λ, let Aλ = {x ∈ R : −λ < x < 1/λ}. Find U λ∈Λ Aλ and ~U λ∈Λ Aλ respectively.
Let C(R) be the vector space of continuous functions from R to R with the usual...
Let C(R) be the vector space of continuous functions from R to R with the usual addition and scalar multiplication. Determine if W is a subspace of C(R). Show algebraically and explain your answers thoroughly. a. W = C^n(R) = { f ∈ C(R) | f has a continuous nth derivative} b. W = {f ∈ C^2(R) | f''(x) + f(x) = 0} c. W = {f ∈ C(R) | f(-x) = f(x)}.
Let V be the vector space of all functions f : R → R. Consider the...
Let V be the vector space of all functions f : R → R. Consider the subspace W spanned by {sin(x), cos(x), e^x , e^−x}. The function T : W → W given by taking the derivative is a linear transformation a) B = {sin(x), cos(x), e^x , e^−x} is a basis for W. Find the matrix for T relative to B. b)Find all the eigenvalues of the matrix you found in the previous part and describe their eigenvectors. (One...
Let p(y) denote the probability function associated with a Poisson random variable with mean λ. Show...
Let p(y) denote the probability function associated with a Poisson random variable with mean λ. Show that the ratio of successive probabilities satisfies (p(y)/p(y-1)) = ( λ /y), for y=1,2,...
Let V be a finite dimensional vector space over R. If S is a set of...
Let V be a finite dimensional vector space over R. If S is a set of elements in V such that Span(S) = V , what is the relationship between S and the basis of V ?
1. Let V and W be vector spaces over R. a) Show that if T: V...
1. Let V and W be vector spaces over R. a) Show that if T: V → W and S : V → W are both linear transformations, then the map S + T : V → W given by (S + T)(v) = S(v) + T(v) is also a linear transformation. b) Show that if R: V → W is a linear transformation and λ ∈ R, then the map λR: V → W is given by (λR)(v) =...
(10pt) Let V and W be a vector space over R. Show that V × W...
(10pt) Let V and W be a vector space over R. Show that V × W together with (v0,w0)+(v1,w1)=(v0 +v1,w0 +w1) for v0,v1 ∈V, w0,w1 ∈W and λ·(v,w)=(λ·v,λ·w) for λ∈R, v∈V, w∈W is a vector space over R. (5pt)LetV beavectorspaceoverR,λ,μ∈R,andu,v∈V. Provethat (λ+μ)(u+v) = ((λu+λv)+μu)+μv. (In your proof, carefully refer which axioms of a vector space you use for every equality. Use brackets and refer to Axiom 2 if and when you change them.)
2. Let X ~ Pois (λ) λ > 0 a. Show explicitly that this family is...
2. Let X ~ Pois (λ) λ > 0 a. Show explicitly that this family is “very regular,” that is, that R0,R1,R2,R3,R4 hold. R 0 - different parameter values have different functions. R1 - parameter space does not contain its own endpoints. R 2. - the set of points x where f (x, λ) is not zero and should not depend on λ . R 3. One derivative can be found with respect to λ. R 4. Two derivatives can...
can a vector with dimensions R^N and a vector with dimensions R^N+1 be a matrix? and...
can a vector with dimensions R^N and a vector with dimensions R^N+1 be a matrix? and if so what would it dimension size be?
Let A ⊆ R, let f : A → R be a function, and let c...
Let A ⊆ R, let f : A → R be a function, and let c be a limit point of A. Suppose that a student copied down the following definition of the limit of f at c: “we say that limx→c f(x) = L provided that, for all ε > 0, there exists a δ ≥ 0 such that if 0 < |x − c| < δ and x ∈ A, then |f(x) − L| < ε”. What was...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT