In: Statistics and Probability
A study was conducted that measured the total brain volume (TBV)
(in mm3) of patients that had schizophrenia and patients
that are considered normal. Table #1 contains the TBV of the normal
patients and Table #2 contains the TBV of schizophrenia patients
("SOCR data Oct2009," 2013).
Table #1: Total Brain Volume (in mm3) of Normal Patients
1663407 |
1583940 |
1299470 |
1535137 |
1431890 |
1578698 |
1453510 |
1650348 |
1288971 |
1366346 |
1326402 |
1503005 |
1474790 |
1317156 |
1441045 |
1463498 |
1650207 |
1523045 |
1441636 |
1432033 |
1420416 |
1480171 |
1360810 |
1410213 |
1574808 |
1502702 |
1203344 |
1319737 |
1688990 |
1292641 |
1512571 |
1635918 |
Table #2: Total Brain Volume (in mm3) of Schizophrenia Patients
1331777 |
1487886 |
1066075 |
1297327 |
1499983 |
1861991 |
1368378 |
1476891 |
1443775 |
1337827 |
1658258 |
1588132 |
1690182 |
1569413 |
1177002 |
1387893 |
1483763 |
1688950 |
1563593 |
1317885 |
1420249 |
1363859 |
1238979 |
1286638 |
1325525 |
1588573 |
1476254 |
1648209 |
1354054 |
1354649 |
1636119 |
Is there enough evidence to show that the patients with schizophrenia have less TBV on average than a patient that is considered normal? Test at the 10% level.
(i) Let ?1= mean TBV of patients that are considered normal. Let ?2 = mean TBV of patients that had schizophrenia. Which of the following statements correctly defines the null hypothesis HO?
A. ?1 + ?2= 0
B. ?1 – ?2< 0 (?1 < ?2)
C. ?1 ? ?2 > 0 (?1 > ?2)
D. ?1 ? ?2 = 0 (?1 = ?2)
Enter letter corresponding to correct answer
(ii) Let ?1= mean TBV of patients that are considered normal. Let ?2 = mean TBV of patients that had schizophrenia. Which of the following statements correctly defines the alternate hypothesis HA?
A. ?1 ? ?2 = 0 (?1 = ?2)
B. ?1 – ?2< 0 (?1 < ?2)
C. ?1 ? ?2 > 0 (?1 > ?2)
D. ?1 + ?2= 0
Enter letter corresponding to correct answer
(iii) Enter the level of significance ? used for this test:
Enter in decimal form. Examples of correctly entered answers: 0.01 0.02 0.05 0.10
(iv) For sample from population with mean = ?1 : Determine sample mean x¯1 and sample standard deviation s1iv For sample from population with mean = ?1 : Determine sample mean x¯1 and sample standard deviation s1 {"version":"1.1","math":"<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathsize="14px"><mrow><mfenced><mi mathvariant="bold">iv</mi></mfenced><mo mathvariant="bold"> </mo><mo mathvariant="bold"> </mo><mi mathvariant="bold">For</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">sample</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">from</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">population</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">with</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">mean</mi><mo mathvariant="bold"> </mo><mo mathvariant="bold">=</mo><mo mathvariant="bold"> </mo><msub><mi mathvariant="bold-italic">μ</mi><mn mathvariant="bold">1</mn></msub><mo mathvariant="bold"> </mo><mo mathvariant="bold">:</mo><mo mathvariant="bold"> </mo><mo mathvariant="bold"> </mo><mspace linebreak="newline"></mspace><mo mathvariant="bold"> </mo><mo mathvariant="bold"> </mo><mo mathvariant="bold"> </mo><mo mathvariant="bold"> </mo><mo mathvariant="bold"> </mo><mo mathvariant="bold"> </mo><mo mathvariant="bold"> </mo><mo mathvariant="bold"> </mo><mi mathvariant="bold">Determine</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">sample</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">mean</mi><mo mathvariant="bold"> </mo><msub><mover><mi mathvariant="bold">x</mi><mo mathvariant="bold">¯</mo></mover><mn mathvariant="bold">1</mn></msub><mo mathvariant="bold"> </mo><mi mathvariant="bold">and</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">sample</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">standard</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">deviation</mi><mo mathvariant="bold"> </mo><msub><mi mathvariant="bold-italic">s</mi><mn mathvariant="bold">1</mn></msub></mrow></mstyle></math>"}
Enter sample mean in integer form (no decimals), then comma, then sample standard deviation in integer form. Examples of correctly entered answers:
13145,1211
-112845,13187
(v) For sample from population with mean = ?2 : Determine sample mean x¯2 and sample standard deviation s2v For sample from population with mean = ?2 : Determine sample mean x¯2 and sample standard deviation s2 {"version":"1.1","math":"<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathsize="14px"><mrow><mfenced><mi mathvariant="bold">v</mi></mfenced><mo mathvariant="bold"> </mo><mo mathvariant="bold"> </mo><mi mathvariant="bold">For</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">sample</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">from</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">population</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">with</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">mean</mi><mo mathvariant="bold"> </mo><mo mathvariant="bold">=</mo><mo mathvariant="bold"> </mo><msub><mi mathvariant="bold-italic">μ</mi><mn mathvariant="bold">2</mn></msub><mo mathvariant="bold"> </mo><mo mathvariant="bold">:</mo><mspace linebreak="newline"></mspace><mo mathvariant="bold"> </mo><mo mathvariant="bold"> </mo><mo mathvariant="bold"> </mo><mo mathvariant="bold"> </mo><mo mathvariant="bold"> </mo><mo mathvariant="bold"> </mo><mo mathvariant="bold"> </mo><mi mathvariant="bold">Determine</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">sample</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">mean</mi><mo mathvariant="bold"> </mo><msub><mover><mi mathvariant="bold">x</mi><mo mathvariant="bold">¯</mo></mover><mn mathvariant="bold">2</mn></msub><mo mathvariant="bold"> </mo><mi mathvariant="bold">and</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">sample</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">standard</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">deviation</mi><mo mathvariant="bold"> </mo><msub><mi mathvariant="bold-italic">s</mi><mn mathvariant="bold">2</mn></msub></mrow></mstyle></math>"}
Enter sample mean in integer form (no decimals), then comma, then sample standard deviation in integer form. Examples of correctly entered answers:
13145,1211
-112845,13187
(vi) Determine degrees of freedom df :
Enter value in decimal form rounded down to nearest whole number. Examples of correctly entered answers:
2 3 16 110
(vii) Determine test statistic:
Enter value in decimal form rounded to nearest ten-thousandth. Examples of correctly entered answers:
0.0104 3.0370 16.5000 110.0819
(viii) Using tables, calculator, or spreadsheet: Determine and enter p-value corresponding to test statistic.
Enter value in decimal form rounded to nearest ten-thousandth. Examples of correctly entered answers:
0.0001 0.0021 0.0305 0.6004 0.8143 1.0000
(ix) Comparing p-value and ? value, which is the correct decision to make for this hypothesis test?
A. Reject Ho
B. Fail to reject Ho
C. Accept Ho
D. Accept HA
Enter letter corresponding to correct answer.
(x) Select the statement that most correctly interprets the result of this test:
A. The result is not statistically significant at .10 level of significance. Sufficient evidence exists to support the claim that patients with schizophrenia have less TBV on average than a patient that is considered normal.
B. The result is not statistically significant at .10 level of significance. There is not enough evidence to support the claim that patients with schizophrenia have less TBV on average than a patient that is considered normal.
C. The result is statistically significant at .10 level of significance. Sufficient evidence exists to support the claim that patients with schizophrenia have less TBV on average than a patient that is considered normal.
D. The result is statistically significant at .10 level of significance. There is not enough evidence to support the claim that patients with schizophrenia have less TBV on average than a patient that is considered normal.
Enter letter corresponding to most correct answer
The Null Hypothesis is
The alternative hypothesis is
#### By using R command
>
X1=c(1663407,1583940,1299470,1535137,1431890,1578698,1453510,1650348,1288971,1366346,1326402,1503005,1474790,1317156,1441045,1463498,1650207,1523045,1441636,1432033,1420416,1480171,1360810,1410213,1574808,1502702,1203344,1319737,1688990,1292641,1512571,1635918)
> X1 ####TBV of the normal patients
[1] 1663407 1583940 1299470 1535137 1431890 1578698 1453510 1650348
1288971
[10] 1366346 1326402 1503005 1474790 1317156 1441045 1463498
1650207 1523045
[19] 1441636 1432033 1420416 1480171 1360810 1410213 1574808
1502702 1203344
[28] 1319737 1688990 1292641 1512571 1635918
>
X2=c(1331777,1487886,1066075,1297327,1499983,1861991,1368378,1476891,1443775,1337827,1658258,1588132,1690182,1569413,1177002,1387893,1483763,1688950,1563593,1317885,1420249,1363859,1238979,1286638,1325525,1588573,1476254,1648209,1354054,1354649,1636119)
> X2 ####TBV of the schizophrenia patients
[1] 1331777 1487886 1066075 1297327 1499983 1861991 1368378 1476891
1443775
[10] 1337827 1658258 1588132 1690182 1569413 1177002 1387893
1483763 1688950
[19] 1563593 1317885 1420249 1363859 1238979 1286638 1325525
1588573 1476254
[28] 1648209 1354054 1354649 1636119
> mean(X1) ### Sample mean of X1
[1] 1463339
> mean(X2) ### Sample mean of X2
[1] 1451293
> var(X1) ##sample variance of X1
[1] 15739779000
> var(X2) ##sample variance of X2
[1] 29560690487
> sd(X1) ## sample standard deviation of X1
[1] 125458.3
> sd(X2) ## sample standard deviation of X2.
[1] 171932.2
> t.test(X1,X2)
Welch Two Sample t-test
data: X1 and X2
t = 0.31684, df = 54.817, p-value = 0.7526
alternative hypothesis: true difference in means is not equal to
0
95 percent confidence interval:
-64151.34 88243.39
sample estimates:
mean of x mean of y
1463339 1451293
The degrees of freedom is =54.817
The test statistics is =0.31841
p-value = 0.7513
The Pvalue 0.7513 indicates that we are unable to reject the null hypothesis at 10% level of significance.
The result is not statistically significant at .10 level of significance. There is not enough evidence to support the claim that patients with schizophrenia have less TBV on average than a patient that is considered normal.