1. Find the general solution to the following ODE:
y′′′+ 4y′= sec(2x)
2. Find the solution to the following IVP:
2y′′+ 2y′−2y= 6x2−4x−1
y(0) = −32
y′(0) = 5
3. Verify that y1=x1/2ln(x) is a solution
to
4x2y′′+y= 0,
and use reduction of order to find a second solution
y2.
4.
Find the general solutions to the following ODEs:
a) y′′′−y′= 0.
b) y′′+ 2y′+y= 0.
c) y′′−4y′+ 13y= 0.
Find the general solution y(t) to the following ODE using (a)
Method of Undetermined Coefficients AND (b) Variation of
Parameters:
2y"-y'+5y = cos(t) - et Sin(t)
Find a general solution to the differential equation using the
method of variation of parameters.
y''+ 25y= sec5t
The general solution is y(t)= ___
y''+9y= csc^2(3t)
The general solution is y(t)= ___
Using variation of parameters, find a particular solution of the
given differential equations:
a.) 2y" + 3y' - 2y = 25e-2t (answer should be: y(t) =
2e-2t (2e5/2 t - 5t - 2)
b.) y" - 2y' + 2y = 6 (answer should be: y = 3 + (-3cos(t) +
3sin(t))et )
Please show work!