Question

In: Physics

a) A surface completely surrounds a 7.8 × 10-6 C charge. Find the electric flux through...

a) A surface completely surrounds a 7.8 × 10-6 C charge. Find the electric flux through this surface when the surface is (a) a sphere with a radius of 0.74 m, (b) a sphere with a radius of 0.32 m, and (c) a cube with edges that are 0.29 m long.

b) A circular surface with a radius of 0.057 m is exposed to a uniform electric field of magnitude 1.84 × 104 N/C. The electric flux through the surface is 75 N·m2/C. What is the angle between the direction of the electric field and the normal to the surface?

Thanks !

Solutions

Expert Solution

we know the electric field through a close surface is given by the formula ,

E is the electric field.


Related Solutions

An electric flux of 157 N.m2/C passes through a flat horizontal surface that has an area...
An electric flux of 157 N.m2/C passes through a flat horizontal surface that has an area of 0.87 m2. The flux is due to a uniform electric field. What is the magnitude of the electric field if the field points 15o above the horizontal?
The electric flux passing through a spherical Gaussian surface of radius r = 1 m having...
The electric flux passing through a spherical Gaussian surface of radius r = 1 m having a charge +q at its center is 175.353 Nm2/C. Now, we replace the spherical Gaussian surface with a cubical one keeping the charge at its center. If the length of the cube sides is d = 2 m, then the value of the electric flux passing through each face of the cube is ? Blank 1. Calculate the answer by read surrounding text. Nm2/C?
Let F be a vector field. Find the flux of F through the given surface. Assume...
Let F be a vector field. Find the flux of F through the given surface. Assume the surface S is oriented upward. F = eyi + exj + 24yk; S that portion of the plane x + y + z = 6 in the first octant.
A proton is launched from an infinite plane of charge with surface charge density -1.90×10-6 C/m2....
A proton is launched from an infinite plane of charge with surface charge density -1.90×10-6 C/m2. If the proton has an initial speed of 3.70×107 m/s, how far does it travel before reaching its turning point? 1.20×10-6 m 1.80×10-6 m 66.6 m 133 m
An electric field of intensity 3.45 kN/C is applied along the x-axis. Calculate the electric flux through a rectangular...
An electric field of intensity 3.45 kN/C is applied along the x-axis. Calculate the electric flux through a rectangular plane 0.350 m wide and 0.700 m long if the following conditions are true. (a) The plane is parallel to the yz-plane. (b) The plane is parallel to the xy-plane.   (c) The plane contains the y-axis, and its normal makes an angle of 30.0° with the x-axis.
An ion with a charge of +3.2×10−19 C is in a region where a uniform electric...
An ion with a charge of +3.2×10−19 C is in a region where a uniform electric field of 5×104 V/m is perpendicular to a uniform magnetic field of 0.8T. If its acceleration is zero then its speed must be: A. 0 B. 1.6 × 104 m/s C. 4.0 × 104 m/s D. 6.3 × 104 m/s E. any value but 0
A uniform electric field with a magnitude of 6 × 10^6 N/C is applied to a...
A uniform electric field with a magnitude of 6 × 10^6 N/C is applied to a cube of edge length 0.1 m as seen in Fig 22-2 above. If the direction of the E - field is along the +x-axis, what is the electric flux passing through the shaded face of the cube?
An electric field of intensity 2.50 kN/C is applied along the x-axis. Calculate the electric flux...
An electric field of intensity 2.50 kN/C is applied along the x-axis. Calculate the electric flux through a rectangular plane 0.350 m wide and 0.700 m long if the following conditions are true. (a) The plane is parallel to the yz-plane. N · m2/C (b) The plane is parallel to the xy-plane. N · m2/C (c) The plane contains the y-axis, and its normal makes an angle of 42.0° with the x-axis. N · m2/C
find electric field and electric potential due to positive charges distributed at a surface of the...
find electric field and electric potential due to positive charges distributed at a surface of the sphere of the copper atom
Find the total electric charge of 1.7 kg of protons. mp=1.673×10−27kg, e=1.60×10−19C.
Find the total electric charge of 1.7 kg of protons. mp=1.673×10−27kg, e=1.60×10−19C.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT