Question

In: Physics

The 6.50 m long uniform ladder has a mass of 13.0 kg (weight: 130 N). Let...

The 6.50 m long uniform ladder has a mass of 13.0 kg (weight: 130 N). Let µs = 0.25 and µk = 0.20

A)         BEFOREthe person climbs onto the ladder, it is placed against the wall and makes an angle of 59.49° with the floor.  Does the ladder slip?  SHOW WHY/WHY NOT

B)         Then the ladder is moved until it makes an angle of 53.13° with the floor.  How far up the ladder can a 40.0 kg (400 N) person climb?

C)         For what range of angles can the 40.0 kg person climb to the top of the ladder?

Solutions

Expert Solution

(a) The forces actiong on the laddder are shown in the figure below.

For the system to be in equilibrium the forces and the torques acting on the opposite directions should be equal. Here = 59.49.

At equilibrium, forces on x-direction,

Taking forces on the y-direction,

Taking torque assuming A as the point of rotation,

Given the coefficient of statis friction, = 0.25. The maximum value of frictional force that the floor can exert is

But in this case,

So the ladder will slip off.

(b) Now = 53.13. Assume that the weight w =400N person climebed be x. The forces acting on the system are given in the figure beow.

At equilibrium, forces on x-direction,

Taking forces on the y-direction,

So,

Taking torque assuming A as the point of rotation,

The person can climb 1.81m up the ladder.

(c) If the person climb fully up the ladder, hen x = l. Let that angle be . Now taking torque assuming A as the point of rotation,

Dividing throughout by cos

When = 74.10 he can fully climb up the ladder. This is the minimum angle which he can climb up the ladder.

When the ladder starts to slip (given = 0.20)

Therefore,

At this angle the ladder will slip. So the maximum angle he can climb fully up the ladder should be less than 77.17 degree. Therefore the range of angles the person can climb up to the top of the ladder is


Related Solutions

A uniform ladder is 16 m long and weighs 240 N. In the figure, the ladder...
A uniform ladder is 16 m long and weighs 240 N. In the figure, the ladder leans against a vertical, frictionless wall at height h = 7.0 m above the ground. A horizontal force F→ is applied to the ladder at distance d = 2.8 m from its base (measured along the ladder). If force magnitude F = 46 N, what are (a)x-, (b)y-components of the force of the ground on the ladder? If F = 140 N, what are...
A uniform stationary ladder of length L = 4.2 m and mass M = 19 kg...
A uniform stationary ladder of length L = 4.2 m and mass M = 19 kg leans against a smooth vertical wall, while its bottom legs rest on a rough horizontal floor. The coefficient of static friction between floor and ladder is μ = 0.38. The ladder makes an angle θ = 53° with respect to the floor. A painter of mass 8M stands on the ladder a distance d from its base. a. Find the magnitude of the normal...
A uniform 6.0-m-long ladder of mass 15.0 kg leans against a smooth wall (so the force...
A uniform 6.0-m-long ladder of mass 15.0 kg leans against a smooth wall (so the force exerted by the wall, F→W, is perpendicular to the wall). The ladder makes an angle of 25.0 ∘ with the vertical wall, and the ground is rough. Determine the coefficient of static friction at the base of the ladder if the ladder is not to slip when a 77.0-kg person stands three-fourths of the way up the ladder.
A uniform spherical shell of mass M = 2.0 kg and radius R = 13.0 cm...
A uniform spherical shell of mass M = 2.0 kg and radius R = 13.0 cm rotates about a vertical axis on frictionless bearings (see the figure). A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 1.92×10-3 kg m2 and radius r = 4.0 cm, and its attached to a small object of mass m = 4.0 kg. There is no friction on the pulley's axle; the cord does not slip...
A uniform beam is 5.00 m long and has a mass of 53.0 kg. The beam...
A uniform beam is 5.00 m long and has a mass of 53.0 kg. The beam is supported in a horizontal position by a hinge and a cable, with angle ? = 115°. (a) Draw all the forces acting on the beam. (b) Label the axis of rotation and the position vectors of each point of action. (c) What is the tension on the cable? (d) What are the magnitude of the vertical and horizontal forces acting on the hinge?...
A uniform helicopter rotor blade is 8.97 m long, has a mass of 104 kg, and...
A uniform helicopter rotor blade is 8.97 m long, has a mass of 104 kg, and is attached to the rotor axle by a single bolt. (a) What is the magnitude of the force on the bolt from the axle when the rotor is turning at 329 rev/min? (Hint: For this calculation the blade can be considered to be a point mass at its center of mass. Why?) (b) Calculate the torque that must be applied to the rotor to...
A person with mass m1 = 80 kg person climbs a uniform ladder with mass m2...
A person with mass m1 = 80 kg person climbs a uniform ladder with mass m2 = 40 kg and length L = 10 m long that rests against a vertical frictionless wall at an angle of θ = 70° with the floor. When the person climbs 7.0 m from the base of the ladder, the ladder starts to slip. When answering the questions, use the symbolic notations given before using numerical substitutions. B)Find the force of the wall Fw...
A uniform 5-m long ladder weighing 80 N  leans against a frictionless vertical wall. The...
A uniform 5-m long ladder weighing 80 N  leans against a frictionless vertical wall. The foot of the ladder is 1 m  from the wall. What is the minimum coefficient of static friction between the ladder and the floor necessary for the ladder not to slip?
Problem 21: A uniform stationary ladder of length L = 3.7 m and mass M =...
Problem 21: A uniform stationary ladder of length L = 3.7 m and mass M = 19 kg leans against a smooth vertical wall, while its bottom legs rest on a rough horizontal floor. The coefficient of static friction between floor and ladder is μ = 0.44. The ladder makes an angle θ = 56° with respect to the floor. A painter of mass 8M stands on the ladder a distance d from its base. Part (a) Find the magnitude...
At an angle of 36.5deg with the horizontal, a ladder, with mass (m = 100.0 kg)...
At an angle of 36.5deg with the horizontal, a ladder, with mass (m = 100.0 kg) rests on a frictionless wall and on the ground with a friction coefficient (μS). a) What is the minimum value of the ladder-ground static friction coefficient if the ladder’s center of mass is located at a distance, 1/3 of its total length? b) A boy, with mass (m = 45.0 kg), uses the ladder to retrieve a bag of 5 basketballs, each with mass...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT