Question

In: Computer Science

Consider the problem of sorting an array A[1, ..., n] of integers. We presented an O(n...

Consider the problem of sorting an array A[1, ..., n] of integers. We presented an O(n log n)-time algorithm in class and, also, proved a lower bound of Ω(n log n) for any comparison-based algorithm.

3. Give an efficient sorting algorithm for an array D[1, ..., n] whose elements are distinct (D[i] ̸= D[j], for every i ̸= j ∈ {1, ..., n}) and are taken from the set {1, 2, ..., 2n}.

Solutions

Expert Solution

Function sort(A, n)

BEGIN

                temp = create a temporary array of size 2n which store 1 at index I if A contains i

                // array to store sorted array

                ans = [1 .. n]

                // make every entry I temp at index equal to the entry in A to 1

                // traverse te array

                // Time Cmplexity = O( n )

                for i = 1 to n

                BEGIN

                                temp[ A[i] ] = 1

                END

                // traverse the array temp so that we get entries in sorted order

                // if the entry temp[i] = 1, then i was present in A

                // as we traverse in sorted order from 1 to 2n, then the elements(index) which

                // are 1 in temp are in sorted order

                //

                // Time Complexity = O(2n)

                for I = 1 to 2n

                BEGIN

                                // add I to ans

                                ans.add( i )

                END

                return ans

END

Total Time Complexity = O(n) + (2n)

                                         = O(3n)

                                         = O(n)


Related Solutions

Consider the problem of sorting an array A[1, ..., n] of integers. We presented an O(n...
Consider the problem of sorting an array A[1, ..., n] of integers. We presented an O(n log n)-time algorithm in class and, also, proved a lower bound of Ω(n log n) for any comparison-based algorithm. 2. Give an efficient sorting algorithm for an array C[1, ..., n] whose elements are taken from the set {1, 2, 3, 4, 5}.
Consider the problem of sorting an array A[1, ..., n] of integers. We presented an O(n...
Consider the problem of sorting an array A[1, ..., n] of integers. We presented an O(n log n)-time algorithm in class and, also, proved a lower bound of Ω(n log n) for any comparison-based algorithm. 1. Give an efficient sorting algorithm for a boolean1 array B[1, ..., n]. 2. Give an efficient sorting algorithm for an array C[1,...,n] whose elements are taken from the set {1,2,3,4,5}. 3. Give an efficient sorting algorithm for an array D[1, ..., n] whose elements...
Given an array A of n integers, describe an O(n log n) algorithm to decide if...
Given an array A of n integers, describe an O(n log n) algorithm to decide if the elements of A are all distinct. Why does your algorithm run in O(n log n) time?
1. We have an array A of size n. There are only positive integers in this...
1. We have an array A of size n. There are only positive integers in this array. Note that the array may have integers that are not distinct, and it could be any array of positive integers in creation (I like the numbers found the decimal expansion of π for instance). When possible provide the exact complexity of the algorithm. If it’s not possible explain the O/Ω/Θ complexity. Design an efficient algorithm to find the maximum difference between any two...
1. We have an array A of size n. There are only positive integers in this...
1. We have an array A of size n. There are only positive integers in this array. Note that the array may have integers that are not distinct, and it could be any array of positive integers in creation (I like the numbers found the decimal expansion of π for instance). When possible provide the exact complexity of the algorithm. If it’s not possible explain the O/Ω/Θ complexity. Design an efficient algorithm to find the maximum difference between any two...
Suppose we are sorting an array of eight integers using quicksort, and we have just finished...
Suppose we are sorting an array of eight integers using quicksort, and we have just finished the first partitioning with the array looking like this: 2 5 1 7 9 12 11 10. What are the possible values of pivot? Algorithm coures
We have an array A of size n. There are only positive integers in this array....
We have an array A of size n. There are only positive integers in this array. Note that the array may have integers that are not distinct, and it could be any array of positive integers in creation (I like the numbers found the decimal expansion of π for instance). When possible provide the exact complexity of the algorithm. If it’s not possible explain the O/Ω/Θ complexity. a. Design an efficient algorithm to find the maximum difference between any two...
We have an array A of size n. There are only positive integers in this array....
We have an array A of size n. There are only positive integers in this array. Note that the array may have integers that are not distinct, and it could be any array of positive integers in creation (I like the numbers found the decimal expansion of π for instance). When possible provide the exact complexity of the algorithm. If it’s not possible explain the O/Ω/Θ complexity. a. Design an efficient algorithm to find the maximum difference between any two...
P1 Consider an array of length n that contains unique integers between 1 and n+1. For...
P1 Consider an array of length n that contains unique integers between 1 and n+1. For example, an array A1 of length 5 might contain the integers 3, 6, 5, 1, and 4. In an array of this form, one number between 1 and n+1 will be missing. In A1, the integer 2 is missing from the array. As another example, consider the array A2 that contain the integers 4, 7, 5, 2, 6, and 1. A2 has size 6,...
On a circular array with n positions, we wish to place the integers 1, 2, ......
On a circular array with n positions, we wish to place the integers 1, 2, ... r in order, clockwise, such that consecutive integers, including the pair (r,1) are not in adjacent positions on the array. Arrangements obtained by rotation are considered the same. In how many ways can this be done? Give a combinatorial proof.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT