Question

In: Computer Science

We have an array A of size n. There are only positive integers in this array....

We have an array A of size n. There are only positive integers in this array. Note that the array may have integers that are not distinct, and it could be any array of positive integers in creation (I like the numbers found the decimal expansion of π for instance). When possible provide the exact complexity of the algorithm. If it’s not possible explain the O/Ω/Θ complexity. a. Design an efficient algorithm to find the maximum difference between any two integers in the array. b. Design an efficient algorithm to find the minimum difference between any two integers in the array. If there are multiple minimum differences, you only need to find one. c. Design an efficient algorithm to find the majority number in the array if it exists. By majority, I mean the number that occurs more than half the time in the array or ⌈(?+1)/2 ⌉ (there are at least 3 ways that I can think of to approach this).

Solutions

Expert Solution

ALGORITHM

a) efficient algorithm to find the maximum difference between any two integers in the array

-->>Iterate through the array

-->>Find the maximum number and minimum number in the array

-->> Calculate Maximum - Minimum number

Time Complexity: O(n)

b.)

-->> Declare a variable to store the minimum difference and Initialize difference = infinite. This step takes O(1) time.

-->> Sort the array and iterate through the array, This step takes O(n logn) time.

-->> If the difference of adjacent elements is less than the minimum difference then update the minimum difference variable. This step takes O(n) time.

Time Complexity: O(nlogn)

c.)

-->> Iterate the array & Increment the frequency of the element in the HashMap /dictionary one by one

-->> Iterate through every key-value pair in the HashMap /dictionary

-->> If the frequency is more than (n+1)/2 then Print the element and break the loop

Time Complexity: O(n)

FOR CODE, DO LET ME KNOW THE LANGUAGE

******************************************************************************************
PLEASE LIKE IT RAISE YOUR THUMBS UP
IF YOU ARE HAVING ANY DOUBT FEEL FREE TO ASK IN COMMENT SECTION
******************************************************************************************


Related Solutions

We have an array A of size n. There are only positive integers in this array....
We have an array A of size n. There are only positive integers in this array. Note that the array may have integers that are not distinct, and it could be any array of positive integers in creation (I like the numbers found the decimal expansion of π for instance). When possible provide the exact complexity of the algorithm. If it’s not possible explain the O/Ω/Θ complexity. a. Design an efficient algorithm to find the maximum difference between any two...
1. We have an array A of size n. There are only positive integers in this...
1. We have an array A of size n. There are only positive integers in this array. Note that the array may have integers that are not distinct, and it could be any array of positive integers in creation (I like the numbers found the decimal expansion of π for instance). When possible provide the exact complexity of the algorithm. If it’s not possible explain the O/Ω/Θ complexity. Design an efficient algorithm to find the maximum difference between any two...
1. We have an array A of size n. There are only positive integers in this...
1. We have an array A of size n. There are only positive integers in this array. Note that the array may have integers that are not distinct, and it could be any array of positive integers in creation (I like the numbers found the decimal expansion of π for instance). When possible provide the exact complexity of the algorithm. If it’s not possible explain the O/Ω/Θ complexity. Design an efficient algorithm to find the maximum difference between any two...
Given an unsorted array A of size N of integers, find a continuous sub-array which adds...
Given an unsorted array A of size N of integers, find a continuous sub-array which adds to the given number. Declare dynamic arrays and use only pointers syntax. (no [ ]'s or (ptr+1) stuff. input will be the number of input values to enter followed by the sum to compare with. print out the continuous sub-array of values that are equal to sum or the message 'no sum ofund.' there may be more than one sub-array to be found in...
Consider the problem of sorting an array A[1, ..., n] of integers. We presented an O(n...
Consider the problem of sorting an array A[1, ..., n] of integers. We presented an O(n log n)-time algorithm in class and, also, proved a lower bound of Ω(n log n) for any comparison-based algorithm. 2. Give an efficient sorting algorithm for an array C[1, ..., n] whose elements are taken from the set {1, 2, 3, 4, 5}.
Consider the problem of sorting an array A[1, ..., n] of integers. We presented an O(n...
Consider the problem of sorting an array A[1, ..., n] of integers. We presented an O(n log n)-time algorithm in class and, also, proved a lower bound of Ω(n log n) for any comparison-based algorithm. 3. Give an efficient sorting algorithm for an array D[1, ..., n] whose elements are distinct (D[i] ̸= D[j], for every i ̸= j ∈ {1, ..., n}) and are taken from the set {1, 2, ..., 2n}.
Consider an array of length n containing positive and negative integers in random order. Write the...
Consider an array of length n containing positive and negative integers in random order. Write the C++ code that rearranges the integers so that the negative integers appear before the positive integers. write a program that includes both functions and a main() function that tests them. Name the two functions rearrangeN() and rearrangeN2().
On a circular array with n positions, we wish to place the integers 1, 2, ......
On a circular array with n positions, we wish to place the integers 1, 2, ... r in order, clockwise, such that consecutive integers, including the pair (r,1) are not in adjacent positions on the array. Arrangements obtained by rotation are considered the same. In how many ways can this be done? Give a combinatorial proof.
1) Write a function searchValue that accepts an array of integers, the size of the array,...
1) Write a function searchValue that accepts an array of integers, the size of the array, and an integer. Find the last occurrence of the integer passed in as an input argument in the array. Return the index of the last occurrence of the value. If the value is not found, return a -1 2) Write the line of code to call the previous function assuming you have an array vec with length n, and are looking for the number...
Which positive integers n, where 20 ≤ n ≤ 30, have primitive roots?
Which positive integers n, where 20 ≤ n ≤ 30, have primitive roots?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT