Question

In: Advanced Math

The Bessel equation of order p is t2y" + ty' + (t2 - p2)y = 0....

The Bessel equation of order p is t2y" + ty' + (t2 - p2)y = 0. In this problem, assume that p = 1/2:

a.) Show that y1 = sin(t / sqrt(t)) and y2 = cos(t / sqrt(t)) are linearly independent solutions for 0 < t < infinity.

b.) Use the result from part (a), and the preamble in Exercise 3, to find the general solution of t2y" + ty' + (t2 - (1/4))y = t3/2cos(t). (answer should be: 1/2 sin(t) sqrt(t))

**Preamble of Exercise 3: The formula for a particular solution given in (3.42) applies to the more general problem of solving y" + p(t)y' + q(t)y = f(t). In this case, y1 and y2 are independent solutions of the associated homogeneous equation y" + p(t)y' + q(t)y = 0.

Please show work!

Solutions

Expert Solution


Related Solutions

for y(t) function ty'' - ty' + ty = 0, y(0)= 0 , y'(0)= 1 solve...
for y(t) function ty'' - ty' + ty = 0, y(0)= 0 , y'(0)= 1 solve this initial value problem by using Laplace Transform. (The equation could have been given such as "y'' - y' + y = 0" but it is not. Please, be careful and solve this question step by step.) )
Solve the following differential equation, using laplace transforms: y''+ty-y=0 where y(0)=0 and y'(0)=3
Solve the following differential equation, using laplace transforms: y''+ty-y=0 where y(0)=0 and y'(0)=3
a) Verify that the indicial equation of Bessel's equation of order p is (r-p)(r+p)=0 b) Suppose...
a) Verify that the indicial equation of Bessel's equation of order p is (r-p)(r+p)=0 b) Suppose that p is not an integer. Carry out the computation to obtain the solutions y1 and y2 above.
Consider the homogeneous second order equation y′′+p(x)y′+q(x)y=0. Using the Wronskian, find functions p(x) and q(x) such...
Consider the homogeneous second order equation y′′+p(x)y′+q(x)y=0. Using the Wronskian, find functions p(x) and q(x) such that the differential equation has solutions sinx and 1+cosx. Finally, find a homogeneous third order differential equation with constant coefficients where sinx and 1+cosx are solutions.
Consider the following second-order ODE, y"+1/4y=0 with y(0) = 1 and y'(0)=0. Transform this unique equation...
Consider the following second-order ODE, y"+1/4y=0 with y(0) = 1 and y'(0)=0. Transform this unique equation into a system of two 1st-order ODEs. Solve the obtained system for t in [0,0.6] with h = 0.2 by MATLAB using Euler Method or Improved Euler Method.
Consider the linear transformation T : P2 ? P2 given by T(p(x)) = p(0) + p(1)...
Consider the linear transformation T : P2 ? P2 given by T(p(x)) = p(0) + p(1) + p 0 (x) + 3x 2p 00(x). Let B be the basis {1, x, x2} for P2. (a) Find the matrix A for T with respect to the basis B. (b) Find the eigenvalues of A, and a basis for R 3 consisting of eigenvectors of A. (c) Find a basis for P2 consisting of eigenvectors for T.
Use method of Frobenius to find one solution of Bessel's equation of order p: x^2y^''+xy^'+(x^2-p^2)y=0
Use method of Frobenius to find one solution of Bessel's equation of order p: x^2y^''+xy^'+(x^2-p^2)y=0
3. Consider4 the homogenous linear second order differential equation y′′ − 2y′ + y = 0...
3. Consider4 the homogenous linear second order differential equation y′′ − 2y′ + y = 0 (⋆) (a) Verify that the function y = e^x is a solution of equation (⋆) on the interval (−∞, ∞). (b) Verify that the function y = xex is a solution of equation (⋆) on the interval (−∞, ∞). (c) Verify that y = 7e^x + (5xe)^x is a solution of equation (⋆) on the interval (−∞, ∞). (d) Assume that c and d...
y′ = t, y(0) = 1, solution: y(t) = 1+t2/2 y′ = 2(t + 1)y, y(0)...
y′ = t, y(0) = 1, solution: y(t) = 1+t2/2 y′ = 2(t + 1)y, y(0) = 1, solution: y(t) = et2+2t y′ = 5t4y, y(0) = 1, solution: y(t) = et5 y′ = t3/y2, y(0) = 1, solution: y(t) = (3t4/4 + 1)1/3 For the IVPs above, make a log-log plot of the error of Backward Euler and Implicit Trapezoidal Method, at t = 1 as a function of hwithh=0.1×2−k for0≤k≤5.
y′ = t, y(0) = 1, solution: y(t) = 1+t2/2 y′ = 2(t + 1)y, y(0)...
y′ = t, y(0) = 1, solution: y(t) = 1+t2/2 y′ = 2(t + 1)y, y(0) = 1, solution: y(t) = et2+2t y′ = 5t4y, y(0) = 1, solution: y(t) = et5 y′ = t3/y2, y(0) = 1, solution: y(t) = (3t4/4 + 1)1/3 For the IVPs above, make a log-log plot of the error of Explicit Trapezoidal Rule at t = 1 as a function ofhwithh=0.1×2−k for0≤k≤5.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT