Question

In: Statistics and Probability

According to Environmental Canada, the yearly rainfall amount in Vancouver is normally distributed with mean 1055.4...

According to Environmental Canada, the yearly rainfall amount in Vancouver is normally distributed with mean 1055.4 mm and standard deviation 172 mm. a. Find the probability that the rainfall in Vancouver in any one randomly selected year is over 1000 mm? b. Find the probability that the mean rainfall in Vancouver of 10 randomly selected years is over 1000 mm? c. (5 mark) What is the probability that at least 2 of the 5 randomly selected years has rainfall over 1000 mm per year?

Solutions

Expert Solution

Part a)


P ( X > 1000 ) = 1 - P ( X < 1000 )
Standardizing the value

Z = ( 1000 - 1055.4 ) / 172
Z = -0.32

P ( Z > -0.32 )
P ( X > 1000 ) = 1 - P ( Z < -0.32 )
P ( X > 1000 ) = 1 - 0.3745
P ( X > 1000 ) = 0.6255

Part b)


P ( X > 1000 ) = 1 - P ( X < 1000 )
Standardizing the value


Z = -1.02

P ( Z > -1.02 )
P ( X > 1000 ) = 1 - P ( Z < -1.02 )
P ( X > 1000 ) = 1 - 0.1542
P ( X > 1000 ) = 0.8458

Part c)

P ( X > 1000 ) = 0.6255

Mean = n * P = 5 * 0.6255 = 3.1275

Standard deviation =

Using normal approximation to Binomial

P ( X >= 2 )

Using continuity correction

P ( X >= 2 ) = P ( X > 1.5 )


P ( X > 1.5 ) = 1 - P ( X < 1.5 )
Standardizing the value

Z = ( 1.5 - 3.1275 ) / 1.0822
Z = -1.5

P ( Z > -1.5 )
P ( X > 1.5 ) = 1 - P ( Z < -1.5 )
P ( X > 1.5 ) = 1 - 0.0668
P ( X > 1.5 ) = 0.9332


Related Solutions

The annual rainfall in a certain region is approximately normally distributed with mean 41.2 inches and...
The annual rainfall in a certain region is approximately normally distributed with mean 41.2 inches and standard deviation 5.5 inches. Round answers to at least 4 decimal places. a) What is the probability that an annual rainfall of less than 44 inches? b) What is the probability that an annual rainfall of more than 39 inches? c) What is the probability that an annual rainfall of between 38 inches and 42 inches? d) What is the annual rainfall amount for...
The annual rainfall in a certain region is approximately normally distributed with mean 42.6 inches and...
The annual rainfall in a certain region is approximately normally distributed with mean 42.6 inches and standard deviation 5.8 inches. Round answers to the nearest tenth of a percent. a) What percentage of years will have an annual rainfall of less than 44 inches? % b) What percentage of years will have an annual rainfall of more than 40 inches? % c) What percentage of years will have an annual rainfall of between 38 inches and 43 inches?
Assume that the amount of cornflakes in a box is normally distributed with a mean of...
Assume that the amount of cornflakes in a box is normally distributed with a mean of 16 oz. and a standard deviation of 0.1 oz. a) Determine the percent of boxes that will contain between 15.83 oz. and 16.32 oz. of cornflakes? b) Determine the percent of boxes that will contain more than 16.16 oz. of cornflakes. c) If the manufacturer produces 300,000 boxes, how many of them will contain less than 15.83 oz. of cornflakes? d) If the manufacturer...
The fill amount of bottles of a soft drink is normally​ distributed, with a mean of...
The fill amount of bottles of a soft drink is normally​ distributed, with a mean of 2.0 liters and a standard deviation of 0.05 liter. Suppose you select a random sample of 25 bottles. a. What is the probability that the sample mean will be between 1.99 and 2.0 liters​? b. What is the probability that the sample mean will be below 1.98 liters? c. What is the probability that the sample mean will be greater than 2.01 ​liters? d....
The fill amount of bottles of a soft drink is normally​ distributed, with a mean of...
The fill amount of bottles of a soft drink is normally​ distributed, with a mean of 2.0 liters and a standard deviation of 0.05 liter. Suppose you select a random sample of 25 bottles. a. What is the probability that the sample mean will be between 1.99 and 2.0 liters​? b. What is the probability that the sample mean will be below 1.98 liters​? c. What is the probability that the sample mean will be greater than 2.01 ​liters? d....
Suppose that the amount of sugar in a can of Pepsi is normally distributed with mean...
Suppose that the amount of sugar in a can of Pepsi is normally distributed with mean μ = 55 g and standard deviation σ = 1.5 g. What is the probability that d. What is the amount of sugar such that we can know that 97.5% of the cans will have less than that amount of sugar? e. Suppose that at the plant we randomly sample 25 cans. What is the probability that their average amount of sugar is more...
The fill amount of bottles of a soft drink is normally​ distributed, with a mean of...
The fill amount of bottles of a soft drink is normally​ distributed, with a mean of 2.0 liters and a standard deviation of 0.07 liter. Suppose you select a random sample of 25 bottles. a. What is the probability that the sample mean will be below 1.98 liters​? b. What is the probability that the sample mean will be greater than 2.01 ​liters? c. The probability is 99​% that the sample mean amount of soft drink will be at least...
Suppose that the amount of sugar in a can of Pepsi is normally distributed with mean...
Suppose that the amount of sugar in a can of Pepsi is normally distributed with mean μ = 55 g and standard deviation σ = 1.5 g. What is the probability that a. the amount of sugar in the can is more than 56 grams? b. the amount of sugar in the can is less than 53 grams? c. the amount of sugar in the can is more than 2 standard deviations away from the mean?
The amount of water in a bottle is approximately normally distributed with a mean of 2.85...
The amount of water in a bottle is approximately normally distributed with a mean of 2.85 litres with a standard deviation of 0.035-liter. b. If a sample of 4 bottles is​ selected, the probability that the sample mean amount contained is less than 2.82 ​litres is 0.043. c. If a sample of 25 bottles is​ selected, the probability that the sample mean amount contained is less than 2.82 ​litres is 0. Explain the difference in the results of​ (b) and​...
The fill amount of bottles of a soft drink is normally distributed, with a mean of...
The fill amount of bottles of a soft drink is normally distributed, with a mean of 2.0 liters and a standard deviation of 0.04 liter. Suppose you select a random sample of 25 bottles. a. What is the probability that the sample mean will be between 1.99 and 2.0 liters ? b. What is the probability that the sample mean will be below 1.98 liters ? c. What is the probability that the sample mean will be greater than 2.01...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT