In: Math
Solution :
Given that ,
mean = = 195 minutes
standard deviation = = 14 minutes
1) Using standard normal table,
P( -z < Z < z) = 84%
= P(Z < z) - P(Z <-z ) = 0.84
= 2P(Z < z) - 1 = 0.84
= 2P(Z < z) = 1 + 0.84
= P(Z < z) = 1.84 / 2
= P(Z < z) = 0.92
= P(Z < 1.41) = 0.92
= z ± 1.41
Using z-score formula,
x = z * +
x = -1.41 * 14 + 195
x = 175.26 minutes
Using z-score formula,
x = z * +
x = 1.41 * 14 + 195
x = 214.74 minutes
The 84% interval is 175.26 to 214.74 minutes.
2) Using standard normal table,
P( -z < Z < z) = 93.85%
= P(Z < z) - P(Z <-z ) = 0.9385
= 2P(Z < z) - 1 = 0.9385
= 2P(Z < z) = 1 + 0.9385
= P(Z < z) = 1.9385 / 2
= P(Z < z) = 0.9693
= P(Z < 1.41) = 0.9693
= z ± 1.87
Using z-score formula,
x = z * +
x = -1.87 * 14 + 195
x = 168.82 minutes
Using z-score formula,
x = z * +
x = 1.87 * 14 + 195
x = 221.18 minutes
The 93.85% interval is 168.82 to 221.18 minutes.