Question

In: Finance

Year   Project A   Project B 0 –$200   –$200    1 80   100    2 80 100...


Year   Project A   Project B
0 –$200   –$200   
1 80   100   
2 80 100   
3 80 100   
4 80      


a)   If the opportunity cost of capital is 10%, which of these projects is worth pursuing? Explain.

b)   Suppose that you can choose only one of these projects. Which would you choose? The discount rate is still 10%. Justify your reasoning.

c)   Which project would you choose if the opportunity cost of capital were 16%?

d)   What are the internal rates of return on projects A and B?

e)   In light of your answers to Problems a) – d), is there any reason to believe that the project with the higher IRR is the better project?

Solutions

Expert Solution

a)   We need to find the NPV of both the projects:

Project A:

Year CF Discount Factor Discounted CF
0 $ -200.00 1/(1+0.1)^0= 1 1*-200= $ -200.00
1 $      80.00 1/(1+0.1)^1= 0.909090909 0.909090909090909*80= $      72.73
1 $      80.00 1/(1+0.1)^1= 0.909090909 0.909090909090909*80= $      72.73
3 $      80.00 1/(1+0.1)^3= 0.751314801 0.751314800901578*80= $      60.11
4 $      80.00 1/(1+0.1)^4= 0.683013455 0.683013455365071*80= $      54.64
NPV = Sum of all Discounted CF   $60.20

Project B:

Year CF Discount Factor Discounted CF
0 $ -200.00 1/(1+0.1)^0= 1 1*-200= $ -200.00
1 $    100.00 1/(1+0.1)^1= 0.909090909 0.909090909090909*100= $      90.91
2 $    100.00 1/(1+0.1)^2= 0.826446281 0.826446280991735*100= $      82.64
3 $    100.00 1/(1+0.1)^3= 0.751314801 0.751314800901578*100= $      75.13
NPV = Sum of all Discounted CF $48.69

As both have an NPV > 0 both are worth investing in

b) In case of limited resources, project with highest positive NPV should be selected, which in this case is project A

But as both the projects have a different life, we need to use the replacement method or the LCM method. LCM of 3 years and 4 years is 12 so project A will be replaced 2 times and B 3 times

Project A:

Year CF Discount Factor Discounted CF
0 $ -200.00 1/(1+0.1)^0= 1 1*-200= $ -200.00
1 $      80.00 1/(1+0.1)^1= 0.909090909 0.909090909090909*80= $      72.73
1 $      80.00 1/(1+0.1)^1= 0.909090909 0.909090909090909*80= $      72.73
3 $      80.00 1/(1+0.1)^3= 0.751314801 0.751314800901578*80= $      60.11
4 $ -120.00 1/(1+0.1)^4= 0.683013455 0.683013455365071*-120= $    -81.96
5 $      80.00 1/(1+0.1)^5= 0.620921323 0.620921323059155*80= $      49.67
6 $      80.00 1/(1+0.1)^6= 0.56447393 0.564473930053777*80= $      45.16
7 $      80.00 1/(1+0.1)^7= 0.513158118 0.513158118230706*80= $      41.05
8 $ -120.00 1/(1+0.1)^8= 0.46650738 0.466507380209733*-120= $    -55.98
9 $      80.00 1/(1+0.1)^9= 0.424097618 0.424097618372485*80= $      33.93
10 $      80.00 1/(1+0.1)^10= 0.385543289 0.385543289429531*80= $      30.84
11 $      80.00 1/(1+0.1)^11= 0.350493899 0.350493899481392*80= $      28.04
12 $      80.00 1/(1+0.1)^12= 0.318630818 0.318630817710357*80= $      25.49
NPV = Sum of all Discounted CF $    121.80

In years 4 & 8 the inflow is 80 and outflow is 200 so net CF = -120

Project B:

Year CF Discount Factor Discounted CF
0 $ -200.00 1/(1+0.1)^0= 1 1*-200= $ -200.00
1 $    100.00 1/(1+0.1)^1= 0.909090909 0.909090909090909*100= $      90.91
1 $    100.00 1/(1+0.1)^1= 0.909090909 0.909090909090909*100= $      90.91
3 $ -100.00 1/(1+0.1)^3= 0.751314801 0.751314800901578*-100= $    -75.13
4 $    100.00 1/(1+0.1)^4= 0.683013455 0.683013455365071*100= $      68.30
5 $    100.00 1/(1+0.1)^5= 0.620921323 0.620921323059155*100= $      62.09
6 $ -100.00 1/(1+0.1)^6= 0.56447393 0.564473930053777*-100= $    -56.45
7 $    100.00 1/(1+0.1)^7= 0.513158118 0.513158118230706*100= $      51.32
8 $    100.00 1/(1+0.1)^8= 0.46650738 0.466507380209733*100= $      46.65
9 $ -100.00 1/(1+0.1)^9= 0.424097618 0.424097618372485*-100= $    -42.41
10 $    100.00 1/(1+0.1)^10= 0.385543289 0.385543289429531*100= $      38.55
11 $    100.00 1/(1+0.1)^11= 0.350493899 0.350493899481392*100= $      35.05
12 $    100.00 1/(1+0.1)^12= 0.318630818 0.318630817710357*100= $      31.86
NPV = Sum of all Discounted CF $    141.66

in years 3,6 & 9 the inflow is 100 and outflow is -200 so net CF is -100

Now as we see that with replacement, the NPV of project B is higher and therefore project B should be selected. And therefore while comparing projects with unequal lives, we should follow LCM approach

c)   Again using replacement LCM approach we get:

Project A:

Year CF Discount Factor Discounted CF
0 $ -200.00 1/(1+0.16)^0= 1 1*-200= $ -200.00
1 $      80.00 1/(1+0.16)^1= 0.862068966 0.862068965517241*80= $      68.97
1 $      80.00 1/(1+0.16)^1= 0.862068966 0.862068965517241*80= $      68.97
3 $      80.00 1/(1+0.16)^3= 0.640657674 0.640657673541351*80= $      51.25
4 $ -120.00 1/(1+0.16)^4= 0.552291098 0.552291097880475*-120= $    -66.27
5 $      80.00 1/(1+0.16)^5= 0.476113015 0.476113015414202*80= $      38.09
6 $      80.00 1/(1+0.16)^6= 0.410442255 0.410442254667416*80= $      32.84
7 $      80.00 1/(1+0.16)^7= 0.35382953 0.353829529885703*80= $      28.31
8 $ -120.00 1/(1+0.16)^8= 0.305025457 0.30502545679802*-120= $    -36.60
9 $      80.00 1/(1+0.16)^9= 0.26295298 0.262952979998293*80= $      21.04
10 $      80.00 1/(1+0.16)^10= 0.226683603 0.226683603446805*80= $      18.13
11 $      80.00 1/(1+0.16)^11= 0.1954169 0.195416899523107*80= $      15.63
12 $      80.00 1/(1+0.16)^12= 0.168462844 0.168462844416472*80= $      13.48
NPV = Sum of all Discounted CF $      53.82

In years 4 & 8 the inflow is 80 and outflow is 200 so net CF = -120

Project B:

Year CF Discount Factor Discounted CF
0 $ -200.00 1/(1+0.16)^0= 1 1*-200= $ -200.00
1 $    100.00 1/(1+0.16)^1= 0.862068966 0.862068965517241*100= $      86.21
1 $    100.00 1/(1+0.16)^1= 0.862068966 0.862068965517241*100= $      86.21
3 $ -100.00 1/(1+0.16)^3= 0.640657674 0.640657673541351*-100= $    -64.07
4 $    100.00 1/(1+0.16)^4= 0.552291098 0.552291097880475*100= $      55.23
5 $    100.00 1/(1+0.16)^5= 0.476113015 0.476113015414202*100= $      47.61
6 $ -100.00 1/(1+0.16)^6= 0.410442255 0.410442254667416*-100= $    -41.04
7 $    100.00 1/(1+0.16)^7= 0.35382953 0.353829529885703*100= $      35.38
8 $    100.00 1/(1+0.16)^8= 0.305025457 0.30502545679802*100= $      30.50
9 $ -100.00 1/(1+0.16)^9= 0.26295298 0.262952979998293*-100= $    -26.30
10 $    100.00 1/(1+0.16)^10= 0.226683603 0.226683603446805*100= $      22.67
11 $    100.00 1/(1+0.16)^11= 0.1954169 0.195416899523107*100= $      19.54
12 $    100.00 1/(1+0.16)^12= 0.168462844 0.168462844416472*100= $      16.85
NPV = Sum of all Discounted CF $      68.79

Even with 16% opportunity cost, NPV of project B is higher, so it should be chosen

d) IRR is the rate where NPV = 0. For this we will use excel goalseek function or a financial calculator:

Project A has an IRR of 25.56%

Year CF Discount Factor Discounted CF
0 $ -200.00 1/(1+0.255699948294845)^0= 1 1*-200= $ -200.00
1 $      80.00 1/(1+0.255699948294845)^1= 0.796368592 0.796368592160836*80= $      63.71
1 $      80.00 1/(1+0.255699948294845)^1= 0.796368592 0.796368592160836*80= $      63.71
3 $      80.00 1/(1+0.255699948294845)^3= 0.505059298 0.50505929815593*80= $      40.40
4 $      80.00 1/(1+0.255699948294845)^4= 0.402213362 0.402213362230178*80= $      32.18
NPV = Sum of all Discounted CF $        0.00

Project B has an IRR of 29.71%

Year CF Discount Factor Discounted CF
0 $ -200.00 1/(1+0.297156502270638)^0= 1 1*-200= $ -200.00
1 $   100.00 1/(1+0.297156502270638)^1= 0.770917001 0.770917000569728*100= $      77.09
1 $   100.00 1/(1+0.297156502270638)^1= 0.770917001 0.770917000569728*100= $      77.09
3 $   100.00 1/(1+0.297156502270638)^3= 0.458166012 0.458166012140476*100= $      45.82
NPV = Sum of all Discounted CF $        0.00

e)  There may be a possibility that IRR and NPV approaches give contradictory answers, and in that case, we should always go by the NPV approach. But here, as we can see that when we use LCM approach or IRR approach, both lead us to choosing project B, or the one with the higher IRR. But this may not always be the case.


Related Solutions

1.     What is the NPV of the following project? Year A 0 -1,000 1 200 2...
1.     What is the NPV of the following project? Year A 0 -1,000 1 200 2 500 3 500 The WACC for the project is 10 percent.
Consider a project with the following cash flows: Year 0: -$1160 Year 1: $80 Year 2:...
Consider a project with the following cash flows: Year 0: -$1160 Year 1: $80 Year 2: -$270 Year 3: $580 Year 4: $2290 What is the MIRR of the project if the WACC is 13% and the financing costs are 2% ? Group of answer choices 22.23% 21.18% 23.27%
Matrix: Ax b [2 1 0 0 0 | 100] [1 1 -1 0 -1 |...
Matrix: Ax b [2 1 0 0 0 | 100] [1 1 -1 0 -1 | 0] [-1 0 1 0 1 | 50] [0 -1 0 1 1 | 120] [0 1 1 -1 1 | 0] Problem 5 Compute the solution to the original system of equations by transforming y into x, i.e., compute x = inv(U)y. Solution: %code I have not Idea how to do this. Please HELP!
Year Project A PROJECT B PROJECT C 0 (R28000) (R68000) (R15000) 1 R11000 R42000 R11000 2...
Year Project A PROJECT B PROJECT C 0 (R28000) (R68000) (R15000) 1 R11000 R42000 R11000 2 R11000 R18000 R4000 3 R11000 R15000 R2000 4 R11000 R18000 R1000 Suddy limited is considering investing in one of three potential projects.The details of the three projects being considered are summerized above Present value factors based on 10% cost of capital for project duration: year 1 = 0.909 year 2 = 0.826 year 3 = 0.751 year 4 = 0.683 Required : 1- Determine...
​​ Considering the following projects. Project Year 0 1 2 3 4 A Cash flows -$100...
​​ Considering the following projects. Project Year 0 1 2 3 4 A Cash flows -$100 $35 $35 $35 $35 B Cash flows -$100 $60 $50 $40 $30 If project B is risker than project A, in which project A has WACC = 6.00% while project B has WACC = 8.50%. If these two projects are mutually exclusive, which project should the company accept? Compute: NPV, IRR, MIRR, payback, and discounted payback period for each project. # please with details.
Year Project A Project B 0 -$150,000 -$150,000 1 8,000 80,000 2 30,000 40,000 3 45,000...
Year Project A Project B 0 -$150,000 -$150,000 1 8,000 80,000 2 30,000 40,000 3 45,000 35,000 4 55,000 25,000 5 85,000 20,000 At what WACC would there be a break-even between the two projects? 7.23% 8.48% 7.57% 7.89% What is the NPV for Project A assuming the WACC is 10%? $5,653.94 $10,522.64 $6,219.33 $11,574.90 What is the IRR for Project B? 11.2% 13.9% 11.6% 10.9% What is the discounted payback period of Project A assuming the WACC is 10%?...
Consider cash flows for projects A and B Year: 0, 1, 2, 3, 4, 5 Project...
Consider cash flows for projects A and B Year: 0, 1, 2, 3, 4, 5 Project A: -$1000, 375, 375, 375, 375,-100 Project B: -$1000, 900, 700, 500, -200, 200 The cost of capital for both projects is 10% 1. Find the NPV and MIRR of projects A and B. If project A and B are mutually exclusive. 2. Find the crossover rate for projects A and B. 3. What is the profitability index for projects A and B? How...
Project Wind Power Year 0 Year 1 Year 2 Year 3 Costs $6,000,000 $4,000,000 $0 $0...
Project Wind Power Year 0 Year 1 Year 2 Year 3 Costs $6,000,000 $4,000,000 $0 $0 Benefits $18,000,000 $15,000,000 $12,000,000 $12,000,000 Project Hydroelectric power Year 0 Year 1 Year 2 Year 3 Costs $4,000,000 $2,000,000 $1,000,000 $0 Benefits $10,000,000 $14,000,000 $15,000,000 $16,000,000 If the interest rate is 3%, which project would you choose and why? Show your work using excel (15 points) If the interest rate is 15%, which project would you choose and why? Show your work using excel...
Year Project(A) Project (B) 0 -$30,000 -$30,000 1 13,000 5,000 2 11,000 5,000 3 9,000 5,000...
Year Project(A) Project (B) 0 -$30,000 -$30,000 1 13,000 5,000 2 11,000 5,000 3 9,000 5,000 4 7,000 5,000 5 0 5,000 6 7 8 9 10 0 0 0 0 0 5,000 5,000 5,000 5,000 5,000 The required rate of return is 10%. 3). What is the payback period for each of the projects? Which project should be accepted if the payback period method is applied? Assume that the target payback period is 4 years. Explain why. (4). What...
Determine y’, a, and b for the following data: x 0 20 40 60 80 100...
Determine y’, a, and b for the following data: x 0 20 40 60 80 100 120 140 160 180 y 0.01 0.12 0.24 0.38 0.51 0.67 0.84 1.01 1.15 1.31 a)calculate the 0.95 confidence intervals for α and β. b)test to see if a relationship between x and y exists. c)determine the 0.95 confidence limits when x = 90 for: i. α + βx ii. Any one y’ d)determine the 0.95 confidence limits when x = 200 for: i.....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT