Question

In: Math

A carpenter is making doors that are 2058 millimeters tall. If the doors are too long...

A carpenter is making doors that are 2058 millimeters tall. If the doors are too long they must be trimmed, and if they are too short they cannot be used. A sample of 5 doors is made, and it is found that they have a mean of 2047 millimeters with a standard deviation of 10 . Is there evidence at the 0.05 level that the doors are too short and unusable? State the null and alternative hypotheses for the above scenario.

Solutions

Expert Solution

Solution :

Given that,

Population mean = = 2058

Sample mean = = 2047

Sample standard deviation = s = 10

Sample size = n = 5

Level of significance = = 0.05

This is a left (One) tailed test,

The null and alternative hypothesis is,  

Ho: 2058

Ha: 2058

The test statistics,

t = ( - )/ (s/)

= ( 2047 - 2058 ) / ( 10 / 5)

= -2.460

df = n - 1 = 4

P- Value = 0.0349   

The p-value is p = 0.0349 < 0.05,  it is concluded that the null hypothesis is rejected.

Conclusion :

It is concluded that the null hypothesis Ho is rejected. Therefore, there is enough evidence to claim that the doors are too

short and unusable , at the 0.05 significance level.


Related Solutions

A carpenter is making doors that are 2058.0 millimeters tall. If the doors are too long...
A carpenter is making doors that are 2058.0 millimeters tall. If the doors are too long they must be trimmed, and if they are too short they cannot be used. A sample of 14 doors is made, and it is found that they have a mean of 2071.0 millimeters with a standard deviation of 32.0. Is there evidence at the 0.05 level that the doors are too long and need to be trimmed? Assume the population distribution is approximately normal....
A carpenter is making doors that are 2058 millimeters tall. If the doors are too long...
A carpenter is making doors that are 2058 millimeters tall. If the doors are too long they must be trimmed, and if they are too short they cannot be used. A sample of 39 doors is taken, and it is found that they have a mean of 2069 millimeters. Assume a population standard deviation of 24. Is there evidence at the 0.02 level that the doors are either too long or too short? Step 1 of 3: State the null...
A carpenter is making doors that are 2058 millimeters tall. If the doors are too long...
A carpenter is making doors that are 2058 millimeters tall. If the doors are too long they must be trimmed, and if they are too short they cannot be used. A sample of 34 doors is taken, and it is found that they have a mean of 2048 millimeters. Assume a population variance of 441. Is there evidence at the 0.1 level that the doors are too short and unusable? Step 4 of 6: Find the P-value of the test...
A carpenter is making doors that are 20582058 millimeters tall. If the doors are too long...
A carpenter is making doors that are 20582058 millimeters tall. If the doors are too long they must be trimmed, and if they are too short they cannot be used. A sample of 3333 doors is taken, and it is found that they have a mean of 20472047 millimeters. Assume a population standard deviation of 2323. Is there evidence at the 0.020.02 level that the doors are too short and unusable? 1.)Find the value of the test statistic. Round your...
A carpenter is making doors that are 2058.02058.0 millimeters tall. If the doors are too long...
A carpenter is making doors that are 2058.02058.0 millimeters tall. If the doors are too long they must be trimmed, and if they are too short they cannot be used. A sample of 88 doors is made, and it is found that they have a mean of 2070.02070.0 millimeters with a standard deviation of 29.029.0. Is there evidence at the 0.0250.025 level that the doors are too long and need to be trimmed? Assume the population distribution is approximately normal....
A carpenter is making doors that are 2058.0 millimeters tall. If the doors are too long...
A carpenter is making doors that are 2058.0 millimeters tall. If the doors are too long they must be trimmed, and if they are too short they cannot be used. A sample of 23 doors is made, and it is found that they have a mean of 2070.0 millimeters with a variance of 441.00. Is there evidence at the 0.05 level that the doors are too long and need to be trimmed? Assume the population distribution is approximately normal. Step...
A lumber company is making boards that are 2906.0 millimeters tall. If the boards are too...
A lumber company is making boards that are 2906.0 millimeters tall. If the boards are too long they must be trimmed, and if the boards are too short they cannot be used. A sample of 12is made, and it is found that they have a mean of 2908.7 millimeters with a standard deviation of 11.0 A level of significance of 0.1 will be used to determine if the boards are either too long or too short. Assume the population distribution...
A lumber company is making boards that are 2709 millimeters tall. If the boards are too...
A lumber company is making boards that are 2709 millimeters tall. If the boards are too long they must be trimmed, and if they are too short they cannot be used. A sample of 38 boards is taken, and it is found that they have a mean of 2711.5 millimeters. Assume a population variance of 196. Is there evidence at the 0.05 level that the boards are too long and need to be trimmed? Step 1 of 6: State the...
A lumber company is making boards that are 2932.0 millimeters tall. If the boards are too...
A lumber company is making boards that are 2932.0 millimeters tall. If the boards are too long they must be trimmed, and if the boards are too short they cannot be used. A sample of 18 is made, and it is found that they have a mean of 2933.5 millimeters with a standard deviation of 13.0 . A level of significance of 0.1 will be used to determine if the boards are either too long or too short. Assume the...
A lumber company is making boards that are 2729.0 millimeters tall. If the boards are too...
A lumber company is making boards that are 2729.0 millimeters tall. If the boards are too long they must be trimmed, and if the boards are too short they cannot be used. A sample of 30 is made, and it is found that they have a mean of 2725.1 millimeters with a standard deviation of 12.0. A level of significance of 0.05 will be used to determine if the boards are either too long or too short. Assume the population...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT