In: Economics
WTVCA Inc. may invest in new equipment and there are three possible outcomes with the following new present values of $48,570, $33,214 and $15,989, respectively. The outcomes have probabilities of 0.3, 0.5, and 0.2, respectively. Calculate risk (measured by the standard deviation) associated with this proposal.
Let X be the New present values. Let P(x) be the probabilities associated with each present value.
X | 48,570 | 33,214 |
15,989 |
P(X) | 3/10 | 5/10 | 2/10 |
Stanadard Deviation=
Variance of X = E(X2) - [E(X)]2
E(X) means the expected value of X . E(X2) means expected value of X2.
To find the E(X), we will first Mutilply each X with its probability i.e P(X) and then find the summation pof these products.
X | 48570 | 33,214 | 15989 |
P(X) | 3/10 | 5/10 | 2/10 |
X* P(X) | 14,571 | 16,607 | 3197.8 |
E(X2) can be found using the same formula used in finding E(X) . We need to know one thing before that. The chances or probability of X2 taking place will be same as the chances of X taking place. P(X) = P (X2 ).
X | 48570 | 33,214 | 15989 |
P(X) | 3/10 | 5/10 | 2/10 |
X2 | 2,359,044,900 | 1,103,169,796 | 255,648,121 |
X2 P(X) | 707,713,470 | 551,584,898 | 51,129,624.2 |
=
=
=
The risk associated with is of $11,346.0286 .