Question

In: Physics

Two particles of equal masses m1=m2 move on a frictionless horizontal surface in the vicinity of...

Two particles of equal masses m1=m2 move on a frictionless horizontal surface in the vicinity of a fixed force center, with potential energies U1 = 1/2kr^(2)1 and U2 = 1/2kr^(2)2. In addition they interact with each other via a potential energy U12 = 1/2αkr^2 where r is the distance between them and α and k are positive constants.

(a) Find the Lagrangian in terms of the CM position R and the relative position r.

(b) Write down and solve the Euler-Lagrange equations for the CM and relative coordinates X, Y and x, y. Describe the motion.

Solutions

Expert Solution


Related Solutions

Two masses are on a horizontal, frictionless surface. The plane of the surface is the x-y...
Two masses are on a horizontal, frictionless surface. The plane of the surface is the x-y plane. Mass m1 = 1.0kg is at rest while mass m2 = 2.0kg is moving in the positive x-direction at 15m/s. The two masses then undergo a collision and mass m2 is moving with a speed of 9.0m/s at an angle of 35 degrees after the collision. 1) What is the speed of the center of mass of the two masses before the collision?...
A collision occurs between two equal masses m1 and m2. Before the collision m2 is stationary....
A collision occurs between two equal masses m1 and m2. Before the collision m2 is stationary. After the collision both masses are moving differently. After the collision the position of the center of mass and motion of the center of mass respectively are best described as. ANSWER CHOICE A) halfway between the two masses, and stationary B) halfway between the two masses and moving C) halfway between the two masses and moving with the speed of mass m1 D) centered...
Two blocks of masses m and 3m are placed on a frictionless, horizontal surface. A light...
Two blocks of masses m and 3m are placed on a frictionless, horizontal surface. A light spring is attached to the more massive block, and the blocks are pushed together with the spring between them as shown in the figure below. A cord initially holding the blocks together is burned; after that happens, the block of mass 3m moves to the right with a speed of v with arrow3m = 1.70 m/s. (a) What is the velocity of the block...
two masses m1 and m2 move under their mutual gravitation attraction in a uniform external gravitational...
two masses m1 and m2 move under their mutual gravitation attraction in a uniform external gravitational field whose acceleration is g. Choose as coordinates the cartesian coordinates X, Y, Z, of the center of mass (taking Z in the direction of g), the distance r between m1 and m2, and the polar angles θ and φ which specify the direction of the line from m1 to m2. Write expressions for the kinetic energy, the six forces Q_x, ... ,Q_φ and...
Consider two separate blocks with mass M1 and M2 on a horizontal frictionless surface, initially at rest. Both blocks are subjected to the same force of F
  Consider two separate blocks with mass M1 and M2 on a horizontal frictionless surface, initially at rest. Both blocks are subjected to the same force of F (applied horizontally) and they are pushed D meters on the surface. If M1<M2, which one of the following is wrong? A. Kinetic energy of block M1 is greater than the kinetic energy of block M2. B. Speed of block M1 is greater than the speed of block M2. C. Acceleration of block...
A mass; m1 = 64 g, sits on a frictionless horizontal surface, and is attached to...
A mass; m1 = 64 g, sits on a frictionless horizontal surface, and is attached to a spring of spring constant k = 51 N/m. The other end of the horizontal spring is attached to a wall; the system is in equilibrium. Another mass; m2 = 18 g, strikes the stationary mass m1, and sticks to it. As a result, the spring is compressed by a distance of 24.5 cm before the masses come to a momentary stop. a) How...
A block of mass m1 travels at a speed of v0 on a frictionless horizontal surface...
A block of mass m1 travels at a speed of v0 on a frictionless horizontal surface when it comes upon a second block of mass m2 which is initially motionless. Block m2 has a massless spring with spring constant k in front of it. a. Explain why the linear momentum of the system of two blocks and spring is or is not conserved during the collision. b. Explain why the mechanical energy of the system of two blocks and spring...
. Two masses travel toward each other across a horizontal, frictionless surface. They collide, resulting in...
. Two masses travel toward each other across a horizontal, frictionless surface. They collide, resulting in 100 Joules of kinetic energy being lost. Below is a list of the known quantities. Mass#1 = 5.00 kg and has an initial velocity of 10.0 m/s to the right and a final velocity of 3.00 m/s to the right. Mass#2 = unknown and has an initial velocity of 4.00 m/s to the left and a final velocity that is unknown. What is the...
Two masses, m1 and m2, are falling but not freely. In addition to gravity, there is...
Two masses, m1 and m2, are falling but not freely. In addition to gravity, there is also a force F1 applied directly to m1 in the downward direction and a force F2 applied directly to m2 in the horizontal direction. Friction (µs) is present between the two masses and the forces are applied such that they do not rotate. The force F2 is as large as it can be and not have m2 slide relative to m1. (a) Find an...
Three blocks of unknown mass m1, m2=2.0 kg, and m3 = 3.0 kg are on a frictionless horizontal surface as shown on the figure below.
Three blocks of unknown mass m1, m2=2.0 kg, and m3 = 3.0 kg are on a frictionless horizontal surface as shown on the figure below. The blocks are connected by ideal, massless strings. A force FL=11 N is applied to the left block and is directed to the left. A force FR=33 N is applied to the right block, and is directed to the right. The tension T12 in the string between m1 and m2 is 13 N and the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT